Research in Pregnancy Physician Scientist Perspective

George Saade, MD

Professor, OB-GYN and Cell Biology
Chief of Obstetrics and Maternal-Fetal Medicine
Director, Perinatal Research Division
The University of Texas Medical Branch
Galveston, TX

Research in Pregnancy Physician Scientist Perspective

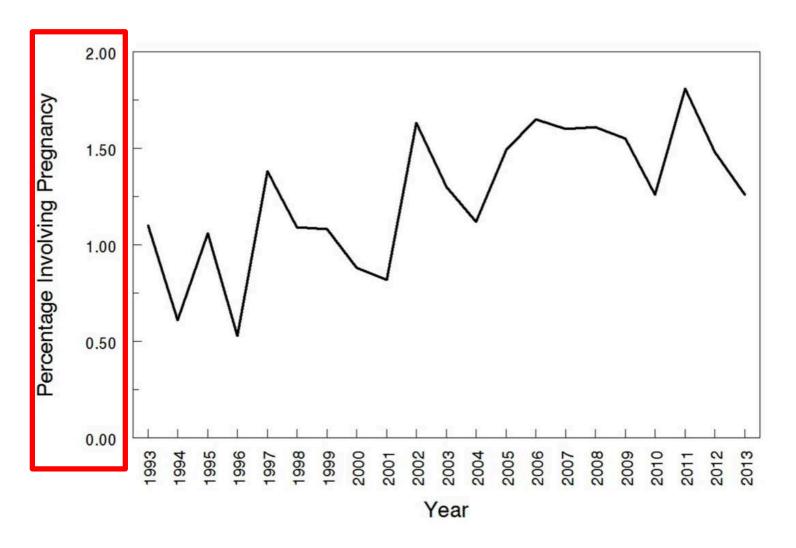
George Saade, MD

Professor, OB-GYN and Cell Biology
Chief of Obstetrics and Maternal-Fetal Medicine
Director, Perinatal Research Division
The University of Texas Medical Branch
Galveston, TX

Research in Pregnancy Physician Scientist Perspective

George Saade, MD

Professor, OB-GYN and Cell Biology
Chief of Obstetrics and Maternal-Fetal Medicine
Director, Perinatal Research Division
The University of Texas Medical Branch
Galveston, TX



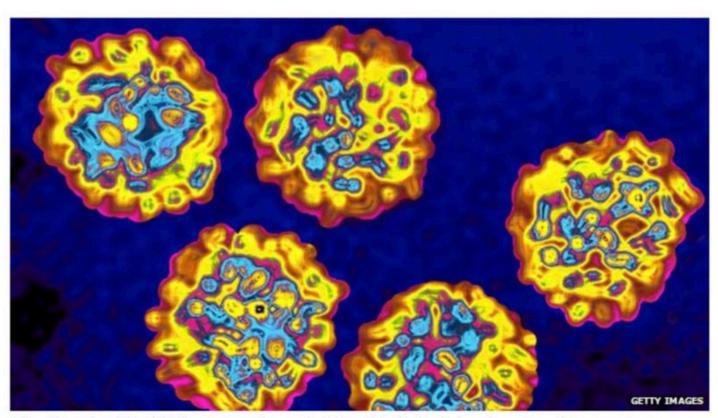
Teratogenicity, while important, is not the only safety concern

Other Concerns in Pregnancy: Dosing

- Lack of data on dosage
 - Physicians extrapolate drug dosage regimens from non-pregnant subjects
- Can lead to under or overdosing

Proportions of PK trials in pregnancy

Magnesium Sulfate


- Many uses in pregnancy
 - Stop premature labor
 - Prevent seizures in women with preeclampsia
 - Protect fetal brain in infants born prematurely

- Dosing regimen
 - No therapeutic level
 - Duration

Hepatitis C: New drug treatment 'is a breakthrough'

By Pippa Stephens Health reporter, BBC News

After 12 weeks, 191 of 208 patients no longer had hepatitis C after being given an oral treatment

A new treatment for hepatitis C "cured" 90% of patients with the infection in 12 weeks, scientists said.

Curing Chronic Hepatitis C — The Arc of a Medical Triumph

Raymond T. Chung, M.D., and Thomas F. Baumert, M.D.

N ENGL J MED 370;17 NEJM.ORG APRIL 24, 2014

It may be possible to imagine the global eradication of HCV infection, but three major challenges remain: infection is often diagnosed at a late stage, the high cost of direct-acting antivirals may lead to selective use, and reinfection remains possible.

What about transmission during pregnancy and childbirth?

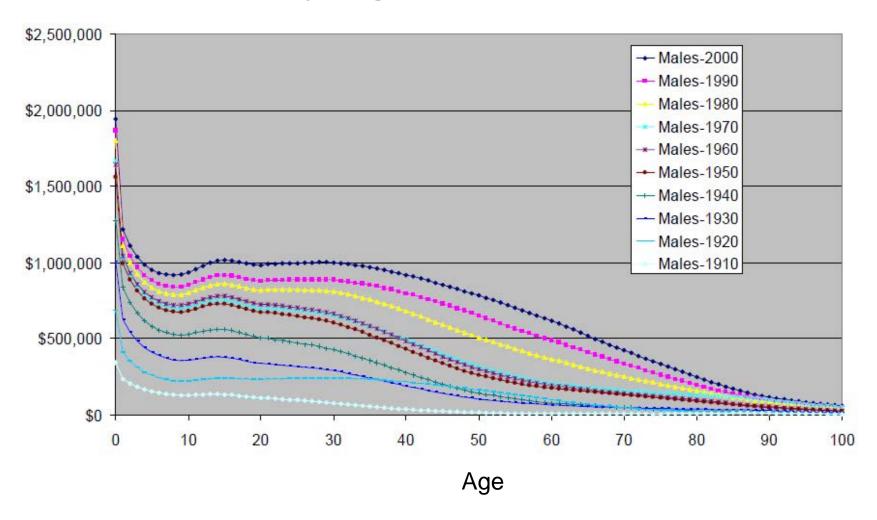
Drug studies in pregnancy: Additional examples

- Newer oral anticoagulants
- AED
- SSRI
- MRI and US contrast agents
- Asthma medications

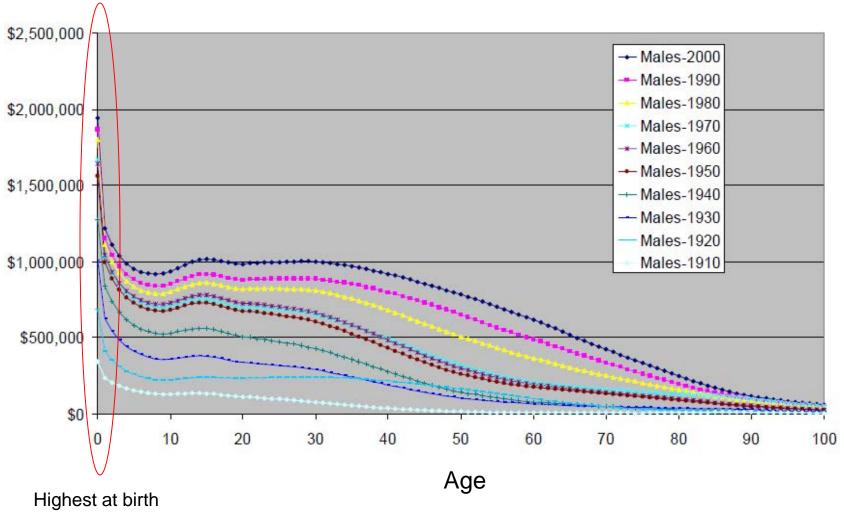
Original Investigation

Acetaminophen Use During Pregnancy, Behavioral Problems, and Hyperkinetic Disorders

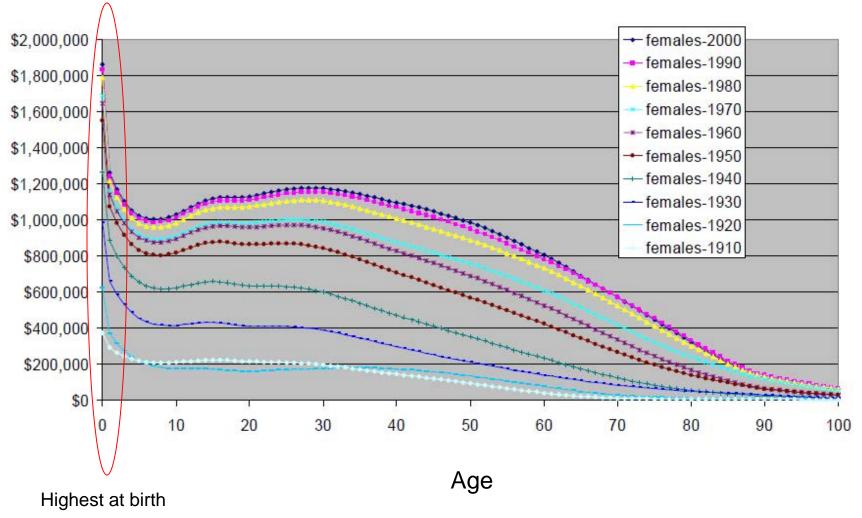
Zeyan Liew, MPH; Beate Ritz, MD, PhD; Cristina Rebordosa, MD, PhD; Pei-Chen Lee, PhD; Jørn Olsen, MD, PhD

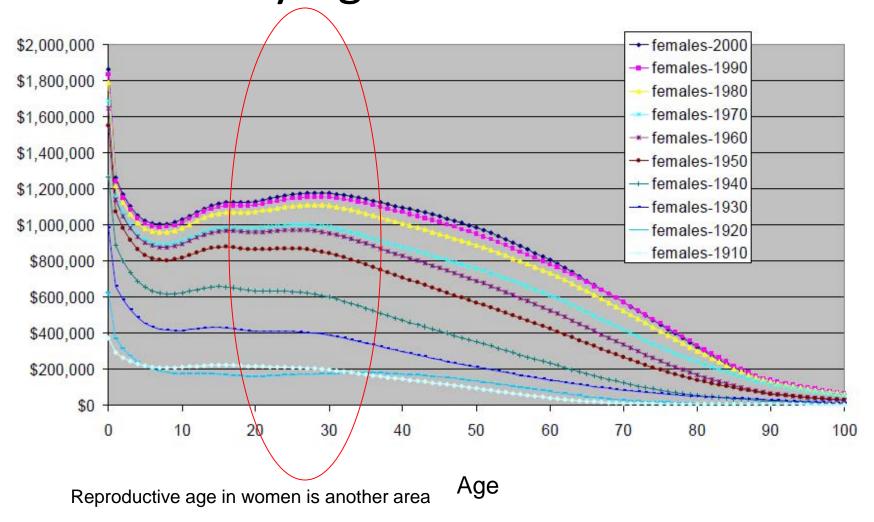

	Hospital-Diagnosed HKD			ADHD Medication			
	_	Hazard Ratios			Hazard Ratios		
Prenatal Exposure and Timing	No. of Cases (Person-years)	Crude	Adjusted (95% CW	No. of Cases (Person-years)	Crude	Adjusted (95% CW	
Acetaminophen use during pregna	incy						
Neverused	283 (159 209)	1.00	1[Reference]	478 (170 264)	1.00	1[Reference]	
Ever used	551 (204 042)	1.52	1.37 (l.19-1.59)	877 (217 945)	1.43	1.29 (l.15-1.44)	
1st trimester only	88 (34 887)	1.42	1.35 (1.07-1.72)	120 (37 288)	1.15	1.09 (0.89-1.33)	
2ndtrimesteronly	43 (18 714)	1.29	1.26 (0.91-1.73)	70 (20 011)	1.25	1.20 (0.91-1.55)	
3rd trimester only	103 (41 418)	1.40	1.22 (0.97-1.53)	182 (44 262)	1.47	1.28 (1.08-1.52)	
Both1stand2ndtrimesters	37 (14 771)	1.41	1.31 (0.93-1.85)	52 (15 789)	1.17	1.09 (0.81-1.45)	
Both 2nd and 3rd trimesters	37 (14 009)	1.49	1.30 (0.92-1.84)	77 (14 936)	1.84	1.63 (l.28-2.07)	
Both 1 stand 3 rd trimesters	70 (25 291)	1.56	1.41 (1.08-1.84)	116 (26 938)	1.53	1.39 (l.13-1.71)	
All3trimesters	120 (36 463)	1.84	1.61 (1.30-2.01)	181 (38 980)	1.65	1.44 (l.21-1.72)	

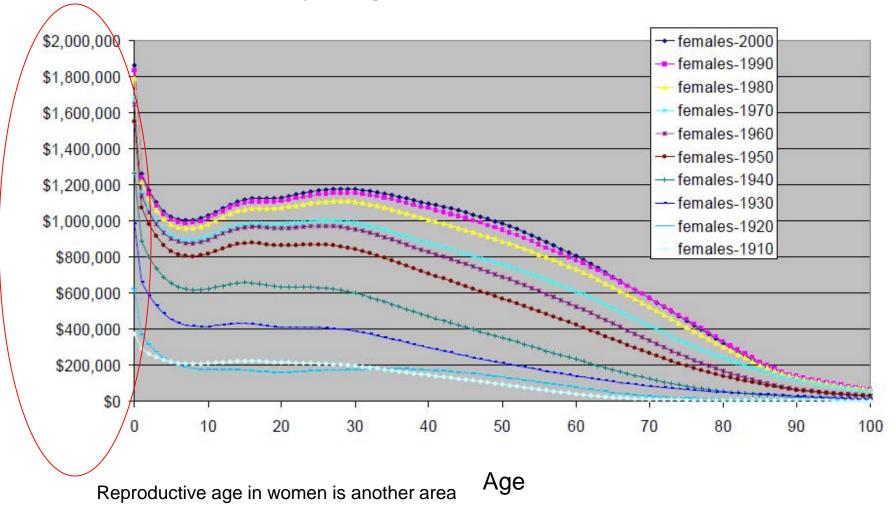
JAMA Pediatrics April 2014 Volume 168, Number 4


What do I see?

- Very little evidence to guide OB practice
- Clinical research in pregnancy is difficult
 - Involves mother, fetus, family
 - Outcomes are rare
 - Long term follow up
- ROI on clinical research in pregnancy
 - Impacts mother, fetus, family
 - Impacts long term


Cumulative Value of Gains in Longevity by Age in Males


Cumulative Value of Gains in Longevity by Age in Males


Cumulative Value of Gains in Longevity by Age in Females

Cumulative Value of Gains in Longevity by Age in Females

Cumulative Value of Gains in Longevity by Age in Females

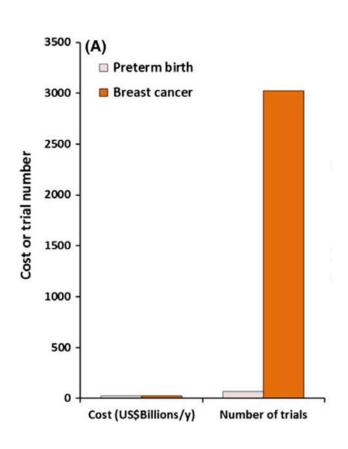
Economic Value of the War on Cancer

Lakdawalla et al. 2010

Cancer	Annual value of survival gains (\$)	Lifetime value of survival gains (\$)	Implied value of a life year (\$)
All combined	30,900	324,149	83,115
Breast	28,066	361,554	100,431
Colorectal	20,588	155,979	91,752
Lung	37,962	68,695	82,765
NHL	33,985	275,055	78,587
Pancreas	44,861	25,817	56,123

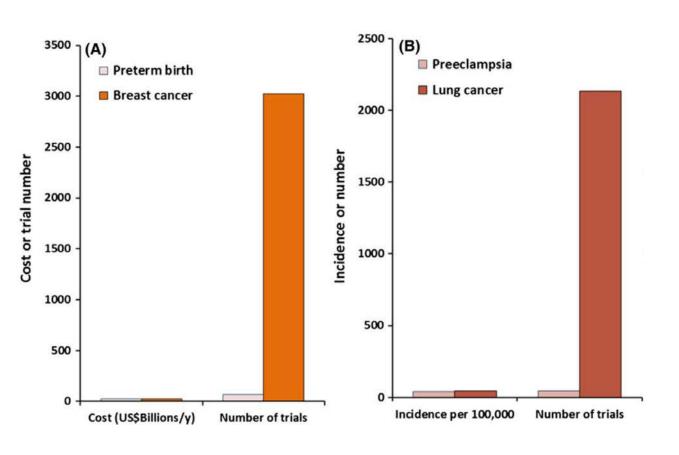
In Year 2006 dollars

A War on Obstetrical Complications is Needed

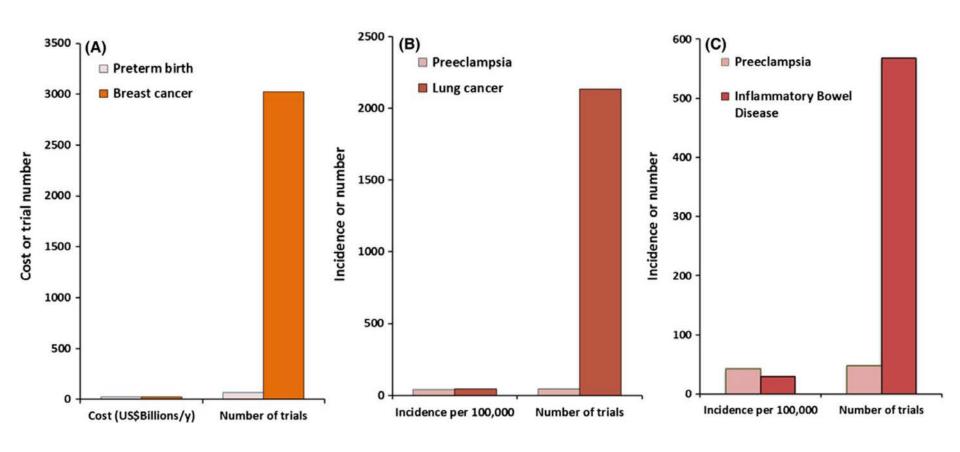

J Scaffidi, a BW Mol, b,c JA Keeland

BJOG 2017;124:132–140.

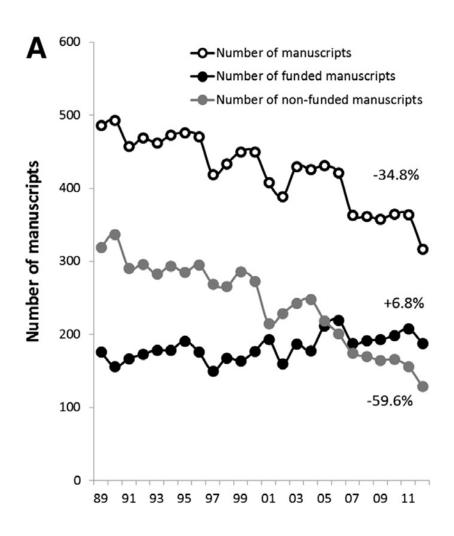
Registry	Registry URL	All trials in registry		Trials active January 2013 – December 2014	
		Total n	Pregnancy- related drug trials (%)	Total n	Pregnancy- related trials (%)
Clinicaltrials.gov EU Clinical Trials Register (EU-CTR) Japan Primary Registry Network (JPRN) Australian and New Zealand Clinical Trials Registry (ANZCTR) International Standard Registered Clinical/social study Number Registry	https://clinicaltrials.gov/ https://www.clinicaltrialsregister.eu/ http://rctportal.niph.go.jp/en/ www.anzctr.org.au/ https://www.isrctn.com/	193 645 25 877 20 157 15 568 13 655	515(0.27) 188(0 73) 33(0.16) 83(0.53) 227(1.66)	128 617 4 543 11 291 10 317	189(0.15) 60 {1.32) 20(0.18) 40(0.39) 35(1.02)
(ISRCTN) Iranian Registry of Clinical Trials (IRCT) ClinicalTrials Registry-India (CTRI) Chinese Clinical Trial Registry (ChiCTR) The Netherlands National Trial Register (NTR) German Clinical Trials Register (DRKS) Health Canada's Clinical Trials Database Clinical Research Information	http://www.irct.ir/ http://ctri.nic.in/Clinicaltrials/login.php http://www.chictr.org.cn/enindex.aspx www.trialregister.nl/trialreg https://www.drks.de/drks_web/ http://ctdb-bdec.hc-sc.gc.ca https://cris.nih.go.kr/eris/en	8333 5905 5198 4980 3634 1485 1343	166(1.99) 102(1 73) 51 (O 98) 33(0.66) 5 (O 14) 4(0.27) 4(0.30)	3664 N/A 1897 N/A 2112 1029 1138	63(1.7) 44 (NIA) 23(1.2) 15 (N/A) 1(0.05) 4(0.39) 1(0.09)
Service (CRiS), Republic of Korea Brazilian Clinical Trials Registry (ReBEC) Pan African Clinical Trial Registry (PACTR) Thai Clinical Trials Registry (TCTR) Cuban Public Registry of Clinical Trials (RPCEC) Sri Lanka Clinical Trials Registry (SLCTR)	www.ensaiosclinicos.gov.br/ www.pactr.org/ www.clinicaltrials.in.th/ http://registroclinico.sld.cu/en/home www.slctr.lk/	574 417 409 193 165	0 31(7.43) 8(196) 0 (O) 11(6.67)	306 N/A 268 119 109	0 (O) 26 (N/A) 6 (2.24) 0 (O) 7 (6.42)


J Scaffidi, a BW Mol, b,c JA Keeland

BJOG 2017;124:132–140.


J Scaffidi, a BW Mol, b,c JA Keeland

BJOG 2017;124:132-140.


J Scaffidi, a BW Mol, b,c JA Keeland

BJOG 2017;124:132-140.

External funding of obstetrical publications: citation significance and trends over 2 decades

William S. Vintzileos; Cande V. Ananth, PhD, MPH; Anthony M. Vintzileos, MD

Trends in National Institutes of Health Funding for Clinical Trials Registered in ClinicalTrials.gov

Table 2. Trials Registered in ClinicalTrials.gov From 2006 Through 2014 by Year of Trial Starta

		Funding Agency, No.	(%) ^c			
		National				
	Total No. of	Institutes of		OtherUS		
Year of trial start	Trials	Health	Industry	Federal Agency	All Others	
2006	9208	1189 (12.9)	4516 (49.0)	229 (2.5)	3397 (36.9)	
2007	10275	1035 (10.1)	4950 (48.2)	265 (2.6)	4163 (40.5)	
2008	11650	1039 (8.9)	5359 (46.0)	278 (2.4)	5078 (43.6)	
2009	12507	1062 (8.5)	5469 (43.7)	300 (2.4)	5807 (46.4)	
2010	12903	1062 (8.2)	5325 (41.3)	311 (2.4)	6324 (49.0)	
2011	13514	949 (7.0)	5424 (40.1)	304 (2.2)	6955 (51.5)	
2012	13909	935 (6.7)	5135 (36.9)	290 (2.1)	7668 (55.1)	
2013	14221	951 (6.7)	5017 (35.3)	306 (2.2)	8084 (56.8)	
2014	14618	873 (6.0)	5274 (36.1)	292 (2.0)	8295 (56.7)	
% Difference (95% CI) d,e	-	-6.9 (-7.7 to -6.2)	-13.0 (-14.2 to -11.7)	-0.5(-0.1 to 0) ^f	19.9 (18.6 to 21.1)	
Absolute difference, No. (%)e	5410 (58.8)	-316 (-26.6)	758 (16.8)	63 (27.5)	4898 (144.2)	

^a Data as of June 26, 2015.

^b Onetrial may have more than 1 funding source.

^c Unless otherwise indicated.

^d Comparisons yielded *P* values of <.001 unless otherwise indicated.

^e Comparisons are between the year 2006 and 2014.

 $^{^{}f}P = .01.$

Trends in National Institutes of Health Funding for Clinical Trials Registered in ClinicalTrials.gov

Table 2. Trials Registered in Clinical Trials.gov From 2006 Through 2014 by Year of Trial Starta

		Funding Agency, No.	(%) ^c		
		National Institutes of		OtherUS	
Year of trial start	Total No. of Trials ^b	Health	Industry	Federal Agency	All Others
2006	9208	1189 (12.9)	4516 (49.0)	229 (2.5)	3397 (36.9)
2007	10275	1035 (10.1)	4950 <mark>(</mark> 48.2)	265 (2.6)	4163 (40.5)
2008	11650	1039 (8.9)	5359 <mark>(</mark> 46.0)	278 (2.4)	5078 (43.6)
2009	12507	1062 (8.5)	5469 (43.7)	300 (2.4)	5807 (46.4)
2010	12903	1062 (8.2)	5325 (41.3)	311 (2.4)	6324 (49.0)
2011	13514	94 <mark>9</mark> (7.0)	5424 (40.1)	304 (2.2)	6955 (51.5)
2012	13909	935 (6.7)	5135 (36.9)	290 (2.1)	7668 (55.1)
2013	14221	951 (6.7)	5017 (35.3)	306 (2.2)	8084 (56.8)
2014	14618	87 <mark>3</mark> (6.0)	5274 (36.1)	292 (2.0)	8295 (56.7)
% Difference (95% CI) d,e	-	-6.9 (-7.7 to -6.2)	-13.0 (-14.2 to -11.7)	-0.5(-0.1 to 0) ^f	19.9 (18.6 to 21.1)
Absolute difference, No. (%)e	5410 (58.8)	-316 (-26.6)	758 (16.8)	63 (27.5)	4898 (144.2)

^a Data as of June 26, 2015.

^b Onetrial may have more than 1 funding source.

^c Unless otherwise indicated.

^d Comparisons yielded *P* values of <.001 unless otherwise indicated.

 $^{^{\}rm e}$ Comparisons are between the year 2006 and 2014.

 $^{^{}f}P = .01.$

Trends in National Institutes of Health Funding for Clinical Trials Registered in ClinicalTrials.gov

Table 2. Trials Registered in Clinical Trials.gov From 2006 Through 2014 by Year of Trial Starta

		Funding Agency, No. (%	6) ^c		
		National			
	TotalNo. of	Institutes of		OtherUS	
Year of trial start	Trials ^b	Health	Industry	Federal Agency	All Others
2006	9208	1189 (12.9)	4516 (49.0)	229 (2.5)	3397 (36.9)
2007	10275	1035 (10.1)	4950 (48.2)	265 (2.6)	4163 (40.5)
2008	11650	1039 (8.9)	5359 (46.0)	278 (2.4)	5078 (43.6)
2009	12507	1062 (8.5)	5469 (43.7)	300 (2.4)	5807 (46.4)
2010	12903	1062 (8.2)	5325 (41.3)	311 (2.4)	6324 (49.0)
2011	13514	949 (7.0)	5424 (40.1)	304 (2.2)	6955 (51.5)
2012	13909	935 (6.7)	5135 (36.9)	290 (2.1)	7668 (55.1)
2013	14221		5017 (35.3)	306 (2.2)	8084 (56.8)
2014	14618		5274 (36.1)	292 (2.0)	8295 (56.7)
% Difference (95% CI)	-		-13.0 (-14.2 to -11.7)	-0.5(-0.1 to 0)	19.9 (18.6 to 21.1)
Absolute difference, No. (%) ^e	5410 (58.8)		758 (16.8)	63 (27.5)	4898 (144.2)

^a Data as of June 26, 2015.

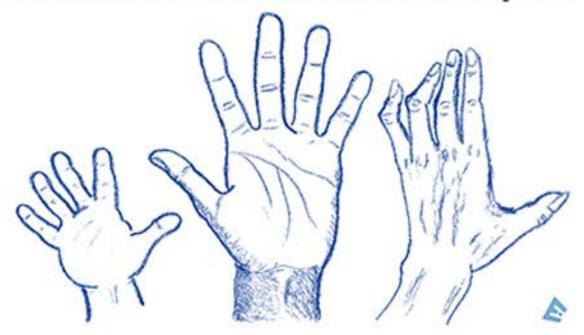
^b Onetrial may have more than 1 funding source.

^c Unless otherwise indicated.

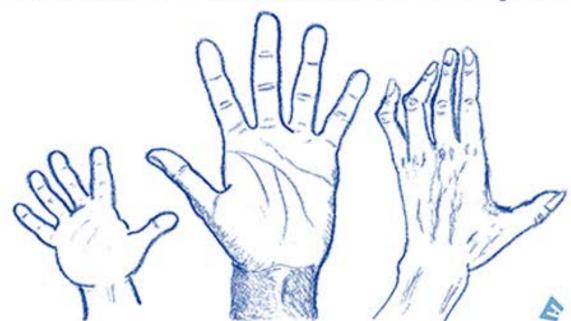

^d Comparisons yielded *P* values of <.001 unless otherwise indicated.

 $^{^{}e}\, Comparisons\, are\, between the year\, 2006\, and 2014.$

 $^{^{}f}P = .01.$


NIH to balance sex in cell and animal studies

Janine A. Clayton and Francis S. Collins unveil policies to ensure that preclinical research funded by the US National Institutes of Health considers females and males.


Inclusion Across the Lifespan

Inclusion Across the Lifespan

Burden in Pregnancy

- Regulatory
- Paternalistic attitudes ("vulnerability")
- Lukewarm interest from industry
- Reliance on governmental funding
- Limited researchers

Burden in Pregnancy

- Overemphasize risk to fetus & underemphasize risk of lack of evidence
- Burden of IND and IDE in pregnancy
- IRBs' limited expertise in pregnancy
- No good in-vivo model of placenta
- Reporting of adverse events

Impact

- Discouraging physician scientists
- Using treatments and interventions without evidence
- Preterm birth remains a problem
- Rising maternal mortality and morbidity
- Health disparity

Burden of Tocolytic Trials

- Dose finding studies
- Inclusion criteria different from clinical practice
- Placebo
- Long term outcome
- Two confirmatory trials

Regulatory and methodologic challenges to tocolytic development

TM Goodwin

University of Southern California, Women's and Children's Hospital, Los Angeles, CA, USA *Correspondence:* Prof TM Goodwin, University of Southern California, Women's and Children's Hospital, 1240 North Mission Road, Room 5K-40, Los Angeles, CA 90033, USA. Email tgoodwin@usc.edu

Accepted 8 September 2006.

Regulatory and methodologic challenges to tocolytic development

TM Goodwin

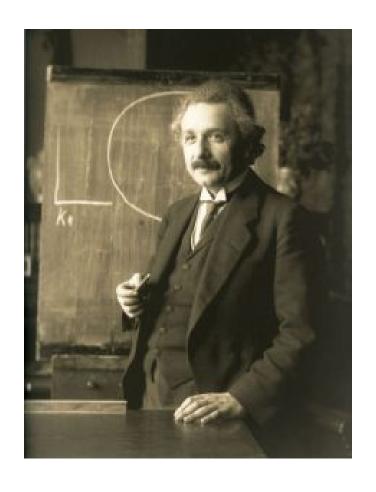
University of Southern California, Women's and Children's Hospital, Los Angeles, CA, USA *Correspondence:* Prof TM Goodwin, University of Southern California, Women's and Children's Hospital, 1240 North Mission Road, Room 5K-40, Los Angeles, CA 90033, USA. Email tgoodwin@usc.edu

Accepted 8 September 2006.

4. An increased cooperative effort with regulatory agencies is needed. Several of the problems facing tocolytic development cannot be solved without a significant input from the FDA. It is fair to ask if FDA bears responsibility in part for the fact that there is no approved agent for tocolysis in the USA? Two of the three principal goals for the FDA Modernization Act of 1997 were intended to move the agency from an adversarial culture *vis a vis* industry and investigators to a cooperative one. ¹¹ The FDA should convene a summit meeting on methods for tocolytic phase III development. Such a meeting has been agreed to in principle and is urgently needed.

Regulatory and methodologic challenges to tocolytic development

TM Goodwin


University of Southern California, Women's and Children's Hospital, Los Angeles, CA, USA *Correspondence:* Prof TM Goodwin, University of Southern California, Women's and Children's Hospital, 1240 North Mission Road, Room 5K-40, Los Angeles, CA 90033, USA. Email tgoodwin@usc.edu

Accepted 8 September 2006.

- 4. An increased cooperative effort with regulatory agencies is needed. Several of the problems facing tocolytic development cannot be solved without a significant input from the FDA. It is fair to ask if FDA bears responsibility in part for the fact that there is no approved agent for tocolysis in the USA? Two of the three principal goals for the FDA Modernization Act of 1997 were intended to move the agency from an adversarial culture *vis a vis* industry and investigators to a cooperative one. ¹¹ The FDA should convene a summit meeting on methods for tocolytic phase III development. Such a meeting has been agreed to in principle and is urgently needed.
- 5. Enactment of a 'Best Pharmaceuticals for Pregnant Mothers Act', similar to the Best Pharmaceuticals For Children Act. The status of pregnant women, as 'pharmaceutical orphans' can only be partially addressed by clinician scientists. There must be recognition and a consensus that safe and efficient development of drugs for use during

Burden of Prevention of Postpartum Hemorrhage

- IND
- Wait until cord clamping
- Breastfeeding
- Neonatal examination
- Creeping clinical practice

If we knew what we were doing, it would not be called research, would it?