Molecular Determinants of Accurate Translation Initiation

How do ribosomes identify the correct translation initiation codons in mRNAs?

Hinnebusch Lab (NICHD) Lorsch Lab (NIGMS/NICHD) Ramakrishnan Lab (MRC, U.K.)

Translation initiation by the scanning mechanism

Scanning favors initiation at 5'-proximal AUGs

...and near-cognate triplets in good context can be used instead

Translation initiation defects in human disease

- Mutations adding or removing upstream AUGs or changing AUG context: melanoma, breast cancer, thalassemia, thrombocytemia, hereditary pancreatitis, familial hypercholesterolemia
- Overexpression of eIFs: malignant transformation.
- Mutations affecting eIF2B, the GEF for eIF2: leukoencephalopathy with vanishing white matter.
- eIF2γ mutation: intellectual disability
- eIF1A mutations: uveal melanoma (UM) and thyroid carcinomas

eIF1 and eIF1A promote "open" conformation of the 405

eIF1 and eIF1A promote "open" conformation of the 40S conducive to TC loading and scanning...

eIF1 and eIF1A promote "open" conformation of the 40S conducive to TC loading and scanning...

...but eIF1 must be ejected to allow Pi release and stabilize TC binding in P_{IN} state

eIF1 promotes P_{OUT} for scanning and blocks P_{IN} at non-AUG codons...

...requiring eIF1 release for AUG selection

Prediction: eIF1 mutations that weaken 40S binding should reduce TC binding to open complex in P_{OUT} state...

Prediction: eIF1 mutations that weaken 40S binding should reduce TC binding to open complex in P_{OUT} state...

...but allow transition to P_{IN} at UUG codons

Translational Control of GCN4 by phosphorylation of eIF2

Translational Control of GCN4 by phosphorylation of eIF2

Integrated Stress Response by phosphorylation of eIF2

GCN4 translation: *in vivo* reporter of defective TC loading on 405 subunits

GCN4 translation: *in vivo* reporter of defective TC loading on 405 subunits

Sui⁻ and Ssu⁻ mutations alter accuracy of start codon selection

Sui⁻ and Ssu⁻ mutations alter accuracy of start codon selection

Prediction: eIF1 mutations that weaken 405 binding should reduce TC loading rate (Gcd⁻ phenotype)...

...and elevate UUG initiation (Sui⁻ phenotype)

eIF1 affinity for 405 dictates TC loading and initiation accuracy

405-eIF1 crystal structure

Rabl et al (Ban N.) Science 2011

eIF1 affinity for 40S dictates TC loading and initiation accuracy

405-eIF1 crystal structure

eIF1 affinity for 40S dictates TC loading and initiation accuracy

> eIF1 affinity for 40S subunit is finely tuned for optimum initiation accuracy

 Sui⁻
 Ssu⁻

 eIF1 ← 40S:
 UUG:AUG

 eIF1 ← 40S:
 UUG:AUG

eIF1 blocks transition to $P_{\rm IN}$ at non-AUG codons...

mutants of tRNA_i and eIF2 characterized at NIH

Hussain & Llacer et al (Ramakrishnan)

Hussain & Llacer et al (Ramakrishnan)

Transition to P_{IN} alters eIF1 location to alleviate clash with tRNA_i

• likely facilitates eIF1's dissociation for AUG selection

Transition to P_{IN} alters eIF1 location to alleviate clash with tRNA_i

tRNAi (P_{IN})

tRNAi (P_{OUT}): Hashem et al. (Frank)

elF1 in 40S•elF1•elF1A elF1 in 48S PIC (P_{IN})

Anil Thakur: mutations in eIF1 loops that should diminish the clash stabilize P_{IN} at UUG codons (Sui⁻)

Tails of eIF1A regulate transition from open to closed conformation

Mutating SE elements in eIF1A CTT <u>decreases</u> accuracy and impairs TC loading

Saini et al Genes Dev

Mutating SI elements in eIF1A NTT <u>restores</u> accuracy and rapid TC loading

eIF1A NTT promotes the P_{IN} state

eIF1A NTT interacts with AUG-anticodon helix

 Ssu⁻ mutations in the eIF1A NTT impede start codon recognition

eIF1A NTT interacts with AUG-anticodon helix

Exome sequencing identifies recurrent somatic mutations in *EIF1AX* and *SF3B1* in uveal melanoma with disomy 3

Marcel Martin^{1,2}, Lars Maßhöfer³, Petra Temming⁴, Sven Rahmann¹, Claudia Metz⁵, Norbert Bornfeld⁵, Johannes van de Nes⁶, Ludger Klein-Hitpass⁷, Alan G Hinnebusch⁸, Bernhard Horsthemke³, Dietmar R Lohmann^{3,9} & Michael Zeschnigk^{3,9}

Conserved bases in tRNA, play distinct roles in the accuracy of AUG selection

G70A mutation decreases rate of TC binding in vitro...

Tony Munoz (Lorsch lab)

... in a manner reversed by eIF1A NTT mutation 17-21

Tony Munoz (Lorsch lab)

Base-pair substitutions of G31-C39 confer Sui⁻ but not Gcd⁻ phenotypes

Hypothesis: U31:A39 substitution in ASL removes barrier to P_{IN}

TC is less tightly bound to the PIC at UUG codons

U31:A39 replacement stabilizes P_{IN} at UUG codons

Tony Munoz (Lorsch lab)

G31:C39 impedes P_{IN} state & demands perfect AUG-anticodon duplex

$tRNA_i$ anticodon stem is distorted in P_{IN} state

Hussain & Llacer et al (Ramakrishnan)

Evidence for 405 conformational changes was lacking

Structural probing of PICs by free-radical cleavage directed by eIF1A

Fan Zhang & Adesh Saini

Greater cleavage of P-site residues in "open" (AUC) versus "closed" (AUG) complex

Fan Zhang & Adesh Saini

AUG recognition evokes closure of P site (P_{IN})

Cleavages in P-site and mRNA binding cleft suppressed in AUG vs AUC complex

Open PIC conformation at AUC shows upward movement of 40S head

py48S-open: (AUC)mRNA py48S-closed: (AUG)mRNA

Llacer et al (Ramakrishnan)

AUC

Conducive for mRNA recruitment & scanning

Open PIC conformation at AUC shows widened P-site

Llacer et al (Ramakrishnan)

• Compatible with triplet sampling by tRNA, during scanning

$eIF2\beta$ contacts $tRNA_i,\ eIF1,\ and\ eIF1A$ in open complex

$eIF2\beta$ contacts eIF1 exclusively in open complex

open (AUC): scanning

Closed (AUG) initiation

eIF2β contacts with eIF1 promote scanning and impede UUG initiation

rps5-E144R impairs AUG recognition by the scanning PIC

Jyothsna Visweswaraiah Yvette Pittman (Dever lab)

rps5-E144R impairs AUG recognition by destabilizing P_{IN} state

Conformational rearrangements in transition from scanning to AUG selection

- Downward head movement constricts mRNA cleft
 - P site closes around tRNA_i
- eIF1A NTT interacts with codon:anticodon duplex
 - eIF1 displaced by tRNA, from P site
 - eIF1 dissociates to allow P_i release from eIF2

MRC Laboratory of Molecular Biology, University of Cambridge, UK

Not shown: Israel Fernandez

Venki Ramakrishnan

Lorsch Lab

Not shown: Tony Munoz & Fujun Zhou

Funding: NIH

Alan's Lab

Not shown: Suna Gulay, Pilar Martin-Marcos, Adesh Saini

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Alan's Lab

Not shown: Suna Gulay, Pilar Martin-Marcos, Adesh Saini

Eunice Kennedy Shriver National Institute of Child Health and Human Development