# The Double-Burden of Heat Stress and Maternal Malnutrition on Maternal-Child Health Outcomes

Nancy F. Krebs, M.D. Kartik Shankar, Ph.D.



NICHD Council Meeting January 24, 2023

# Maternal Malnutrition: A Global Challenge







Undernutrition Malnutrition Poverty

- ~120 million women are underweight in LMIC
- **372 million** (> 50%) WRA with
  micronutrient deficiencies
- Undernutrition →↑↑ risk of death



### Climate Change & Human Health

Impacts on social & environmental **determinants of health** 

2030 – 2050 climate change → ~250,000 additional deaths/yr malnutrition, malaria, diarrhea, & heat stress

Direct damage costs to health estimated at \$2-4 B/year by 2030

#### WHO Climate and Health Fact Sheet

# **Impacts of Climate Change on Health**



# Intersection of Nutrition, Climate (Heat) & Health: Translating to Research Targets



## **NUTRITION – QUANTITY & QUALITY**

## All Children Globally Are At-Risk to Heat Stress

unicef 🚱 for every child **The coldest** year of the rest of their lives Protecting children from the escalating impacts of heatwaves **Executive summary** 

- Already 559 million children are exposed to high heatwave frequency\*.
- In 2020, around 740 million children (1 in 3 children) lived in countries with at least 83 days/year exceeding 35°C.
- By 2050, virtually every child (~2 billion) on the planet will face more frequent heatwaves, irrespective of warming scenarios.

\*>4.5 heatwaves/ year

# Heat Stress: Imminent Threat To Human Health

#### Dangerous heat takes over Midwest, Northeast





Heat waves in resource-limited settings

# **Women First Preconception Nutrition Trial**





PIs: K. Michael Hambidge, MD Nancy Krebs, MD



# **Environmental Variables: Thatta, Pakistan**



Avg Daily Relative Humidity







# **Birth Length is Influenced by Season of Birth**



Days with T<sub>max</sub> > 39 °C



# **Birth Length is Negatively Associated with T1- T**<sub>max</sub>



- For each 5°C increase in the T<sub>max</sub> in the first trimester
  - LGAZ decreased by 0.15 z-scores.
  - HCGAZ decreased by 0.11 z-scores.
- Excessive heat stress (>20 d of >39°C) was associated with
  - Lower birth length (LGAZ, p < 0.01,  $\beta$  = -0.35).
  - Lower head circumference z-scores (p < 0.01; β = -0.29).

Models adjusted for rel. humidity, PM<sub>2.5</sub>, age, parity, mode of delivery, GWG

Shankar et al, PNAS Nexus, In press 2023 https://doi.org/10.1093/pnasnexus/pgac309

# **Heat Stress and Placental Changes**



### **Heat Stress Impacts Placental Protein Translation**



Decreased by Heat

#### Increased by Heat

Shankar et al, PNAS Nexus, In press 2023

## **Preconception MNS Mitigates Heat Effects on LGAZ & HCGAZ**



**Exposure to Excessive Heat in the 1<sup>st</sup> Trimester** 

Shankar et al, PNAS Nexus, In press 2023 https://doi.org/10.1093/pnasnexus/pgac309

### Maternal Newborn Health Registry: NICHD Global Network



# Daily Maximum Temp: 3 Sites (India & Pakistan)





| Characteristics | Overall | Thatta | Belagavi | Nagpur |
|-----------------|---------|--------|----------|--------|
| Mothers, n      | 127,366 | 40,722 | 43,624   | 43,020 |

#### Association of Trimester Average Daily Maximum Temperatures With Birth Outcomes, Overall



Relative risks with corresponding 95% CI and pvalues obtained from modified Poisson approach with a sandwich estimator for each categorical outcome and 5°C in trimester average daily maximum temperatures.

#### Association of Trimester Average Daily Maximum Temperatures With Low-Birth Weight



#### Association of Trimester Average Daily Maximum Temperatures With Preterm Birth



# **Employing Mouse Models: Heat Stress + Malnutrition**





# Single-nuclei RNA-seq of dpc 17.5 placenta (~20,000 nuclei)



#### **DEGs in Clusters**



# **Seasonal Changes In Breast Milk (Women First Trial)**

#### **Breast milk composition 3 months post-partum**



We don't know about milk quantity!

#### Placental Expression Of Lactogenic Genes And Ambient Temperature

Chorionic somatomammotropin hormone (Placental Lactogen)



# Lactogenic Differentiation: HC11 Cells



### **Global Gene Expression Changes With Lactogenic Differentiation And Ambient Temperature**



**Min 2-FC and p < 0.05 (FDR)** 

# **Take Home Messages**

- In the context of maternal malnutrition, ambient heat stress has detrimental effects on intrauterine growth.
- Improved maternal nutritional status provides resilience against heat-induced growth restriction.
- Excessive heat exposure in diminishes placental genes involved in protein translation.
- Ambient heat during pregnancy and lactation is likely to have detrimental effects through multiple pathways.
- **Prospective intervention** and mechanistic are necessary to further elucidate mechanisms.



# Acknowledgments

Women First Investigators & Participants Eunice Kennedy Shriver NICHD Global Network (GN) for Women's and Children's Health Research.

Sumera A. Ali, Ph.D. Sarah Saleem, M.D., MPH. Robert Goldenberg, M.D. K. Michael Hambidge, M.D.

Krebs Lab members Jamie Westcott Jennifer Kemp Sarah Borengasser, Ph.D.

Meghan Ruebel, Ph.D. Puujee Jambal, MS. MPH Stephanie Gilley, MD. Ph.D.



University of Colorado Anschutz Medical Campus



Eunice Kennedy Shriver National Institute of Child Health and Human Development



School of Medicine UNIVERSITY OF COLORADO ANSCHUTZ MEDICAL CAMPUS BILL& MELINDA GATES foundation





# **Season of Birth and Postnatal Growth**



Are there other aspects of postnatal growth influenced by temp?

Breast milk composition?

# **Heat Stress and Maternal Metabolites**



# **Maternal Metabolites Associated with Ambient Temperature**



| Metabolite   | β      | SE    | p-value  | FDR p-<br>value |
|--------------|--------|-------|----------|-----------------|
| Choline      | -0.063 | 0.009 | 4.30E-10 | 1.16E-08        |
| Glutamine    | 0.046  | 800.0 | 1.96E-07 | 2.65E-06        |
| Histidine    | 0.034  | 0.010 | 0.0007   | 0.0055          |
| Arginine     | 0.017  | 0.005 | 0.0008   | 0.0055          |
| SDMA         | 0.012  | 0.004 | 0.004    | 0.0211          |
| Methionine   | 0.020  | 0.007 | 0.004    | 0.0211          |
| Cysteine     | 0.013  | 0.005 | 0.008    | 0.0313          |
| Lysine       | 0.012  | 0.005 | 0.016    | 0.0545          |
| Homoarginine | 0.018  | 800.0 | 0.027    | 0.0820          |
| Targinine    | 0.011  | 0.005 | 0.035    | 0.0942          |

Multiple linear regression models adjusted for cluster and supplement arm

#### Association of Trimester Average Daily Maximum Temperatures With Preeclampsia / HTN

