Precision mouse models of childhood ALS caused by excessive sphingolipid synthesis

Claire Le Pichon, PhD National Institutes of Health NICHD Council Meeting Sept 12, 2022

claire.lepichon@nih.gov

Precision mouse models of disease Traumatic injury

Cell type specificity

Axon injury responses in human neurons

Causes of neurodegeneration are still poorly understood

Loss of neurons/neuronal function

Amyotrophic lateral sclerosis

Placeholder for background on ALS

Mutations in SPTLC1 cause juvenile ALS

(serine palmitoyltransferase 1)

medicine

ARTICLES https://doi.org/10.1038/s41591-021-01346-1

() Check for update

Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis

Payam Mohassel [©]¹, Sandra Donkervoort^{1,26}, Museer A. Lone^{2,26}, Matthew Nalls^{1,26}, Kenneth Gable^{® 3,26}, Sita D. Gupta^{® 3,26}, A. Reghan Foley¹, Ying Hu¹, Jonas Alex Morales Saute⁴, Ana Lucila Moreira⁵, Fernando Kok⁶, Alessandro Introna^{® 7}, Giancarlo Logroscino^{® 7,8}, Christopher Grunseich⁹, Alec R. Nickolls¹, Naemeh Pourshafie⁹, Sarah B. Neuhaus¹, Dimah Saade^{® 1}, Andrea Gangfuß^{® 10}, Heike Kölbel¹⁰, Zoe Piccus¹¹, Claire E. Le Pichon^{® 11}, Chiara Fiorillo¹², Cindy V. Ly¹³, Ana Töpf¹⁴, Lauren Brady¹⁵, Sabine Specht¹⁴, Aliza Zidell¹⁶, Helio Pedro¹⁷, Eric Mittelmann¹⁸, Florian P. Thomas^{® 18}, Katherine R. Chao¹⁹, Chamindra G. Konersman²⁰, Megan T. Cho²¹, Tracy Brandt²¹, Volker Straub^{® 14}, Anne M. Connolly²², Ulrike Schara¹⁰, Andreas Roos¹⁰, Mark Tarnopolsky¹⁵, Ahmet Höke^{® 23}, Robert H. Brown²⁴, Chia-Hsueh Lee^{® 25}, Thorsten Hornemann^{® 2}, Teresa M. Dunn^{® 3 ⊠} and Carsten G. Bönnemann^{® 1⊠}

NATURE MEDICINE | VOL 27 | JULY 2021 | 1197-1204 |

Research

JAMA Neurology | Original Investigation Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

Janel O. Johnson, PhD; Ruth Chia, PhD; Danny E. Miller, MD, PhD; Rachel Li, MD; Ravindran Kumaran, PhD; Yevgeniya Abramzon, BSc; Nada Alahmady, PhD; Alan E. Renton, PhD; Simon D. Topp, PhD; J. Raphael Gibbs, PhD; Mark R. Cookson, PhD; Marya S. Sabir, BSc; Clifton L. Dalgard, PhD; Claire Troakes, PhD; Ashley R. Jones, PhD; Aleksey Shatunov, PhD; Alfredo Iacoangeli, PhD; Ahmad Al Khleifat, PhD; Nicola Ticozzi, MD, PhD; Vincenzo Silani, MD; Cinzia Gellera, PhD; Ian P. Blair, PhD; Carol Dobson-Stone, PhD; John B. Kwok, PhD; Emily S. Bonkowski, ScM; Robin Palvadeau, MSc; Pentti J. Tienari, MD; Karen E. Morrison, MD; Pamela J. Shaw, MD; Ammar Al-Chalabi, PhD; Robert H. Brown Jr, MD, PhD; Andrea Calvo, PhD; Gabriele Mora, PhD; Hind Al-Saif, MD; Marc Gotkine, MBBS; Fawn Leigh, MD; Irene J. Chang, MD; Seth J. Perlman, MD; Ian Glass, MB ChB, MD; Anna I. Scott, PhD; Christopher E. Shaw, MD; A. Nazli Basak, PhD; John E. Landers, PhD; Adriano Chiò, PhD; Thomas O. Crawford, PhD; Bradley N. Smith, PhD; Bryan J. Traynor, MD, PhD; and the FALS Sequencing Consortium; American Genome Center; International ALS Genomics Consortium; and ITALSGEN Consortium

JAMA Neurol. 2021;78(10):1236-1248. doi:10.1001/jamaneurol.2021.2598 Published online August 30, 2021.

All sphingolipid biosynthesis is initiated by SPT

Essential lipids of membranes in mammalian cells Wide spectrum of functions

Sphingolipid biosynthesis pathway

Location of disease-causing mutations in SPTLC1

Previously known SPTLC1 mutations cause HSAN1

(Hereditary Sensory and Autonomic Neuropathy type 1)

Metabolomic alterations resulting from HSAN1 mutations in SPTLC1

Penno et al 2010 Rotthier et al 2011 Mohassel et al 2021

Location of disease-causing mutations in SPTLC1

Previously known SPTLC1 mutations cause HSAN1

Location of disease-causing mutations in SPTLC1

- Previously known SPTLC1 mutations cause HSAN1
- The childhood ALS-linked mutations cluster in a different region: transmembrane domain 1 (TMD1)

Metabolomic alterations resulting from ALS vs HSAN1 mutations in SPTLC1

Sphingolipidomic analysis of patient serum

Mohassel et al., Nat Med 2021

Location of disease-causing mutations in SPTLC1

Location of ALS mutations within SPTLC1 structure

Metabolomic alterations resulting from ALS vs HSAN1 mutations in SPTLC1

Hypotheses - mice engineered with these ALS mutations will exhibit: 1. elevated sphingolipid levels

2. ALS-like neurodegeneration

SPT-ORMDL3 interaction occurs at TMD1

High conservation of TMD1 (encoded by exon 2) Gene editing approach in mouse to knock in the mutation

AA num	per 20	23	38	39 40 41	
Homo so	ipiens LYE <mark>A</mark>	PAYHLILEG	ILILWIIRL	L F S K T Y K	
Pan trog	lodytes LYEA	PAY HLILEG	ILILWIIR	Ε S K T Y K	
Macaca	mulatta LYE 🗛 🛛	PAY HLILEG	I L I L W I I R	Ε S Κ Τ Υ Κ	
A205 Felis cat	us LYE <mark>A</mark> I	PAYHLILEG	ILILWIIR	Γ S Κ Τ Υ Κ	
Y23F Mus mu	sculus LYEA	PAYHLILEG	ILILWIIR	ν F S κτγκ	
∆39 Gallus g	allus FYE 🗛 🗆	PAY HLILEG	ILILWIIR	Ε S Κ Τ Υ Κ	
∆40-41 Takifugu	rubripes FYE 🗛	PA HLILEG	ILILWIFR	Ε S ΚΤΥΚ	
Danio re	rio FYE A	PA HLILEG	FLILWIIR L	Γ S Κ Τ Υ Κ	
Xenopus	tropicalis F Y E 🛕	PA 🛛 HLILEG	ILILWIIR	Γ S ΚΤΥΚ	
TMD1		Cata	lytic Domain		
50 100	150	200	250	300 35	50 400 45

Zoe Piccus et al., unpublished

High conservation of TMD1 (encoded by exon 2) Gene editing approach

A20S

Characterization of Sptlc1^{A20S} knock-in mouse line

A20S	del 40-41
Normal lifespan	Homozygotes runted and die early (5-6 weeks old)
Mild motor symptoms	Tremors, muscle atrophy
Progressive motor neuron, nerve and muscle pathology (but no obvious motor neuron cell body loss)	Misdevelopment and neurodegeneration (more similar to a juvenile syndrome)
Homozygotes exhibit more severe pathology	Histological characterization ongoing

Zoe Piccus et al., unpublished

A20S carriers have slightly lower body weight

Sptlc1^{A20S} animals produce excess sphingolipids

¹⁰ to 20-week-old serum

Sptlc1^{A20S} animals produce excess sphingolipids

10 to 20-week-old serum

Sciatic nerve pathology in Sptlc1 A20S mutants

9-week old, myelin stain

Sciatic nerve pathology in Sptlc1 A20S mutants

Degenerative pathology in Sptlc1^{A20S} mutant nerve

Sptlc1

wt/wt Healthy Schwann cells and axons A20S/A20S Schwann cell pathology /axonal sprouting

Degenerative pathology in Sptlc1^{A20S} mutant nerve

Degenerative pathology in Sptlc1^{A20S} mutant nerve

Sptlc1

wt/wt Healthy axon

A20S/A20S Degenerating axon

1μm

19-week old EM, littermates

Compound Muscle Action Potential (CMAP) recordings reflect functional connectivity between nerve and muscle

1+2: stimulating electrodes3: recording electrode4: reference5: ground

Stimulation (t=0) Latency to peak Max amplitude

A+B: waveform in WT animals C: diminished amplitude in SOD1 animal

Nerve to muscle communication is disrupted in homozygotes

A20S homozygotes have increased NfL in serum

The Sptlc1 A20S mouse model can be used for preclinical testing

Placeholder for prevention study Placeholder for treatment study

Closing thoughts

- Mutations in SPTLC1 associated with ALS produce neurodevelopmental and/or neurodegenerative phenotypes in gene-edited mice
 - Ongoing characterization (motor neuron counts, electrophysiology, muscle histology)
 - Planning prevention study and treatment study using inhibitors of SPTLC1 in Sptlc1^{A20S/A20S} mice
- Mutations in SPTLC1 have also been detected in sporadic ALS patients (Johnson et al., 2021)
- Possibility of a pathogenic role for disrupted sphingolipid metabolism in sporadic ALS
- Potential of sphingolipids as disease biomarkers for ALS

Le Pichon Iab Current members Zoe Piccus Hanna Silberberg Mor Alkaslasi Jorge Gómez-Deza Matthew Nebiyou Josette Wlaschin Sangeetha Hareendran Eliza Lloyd Emily Clark

Alumni Aditya Santoki Austin Gable Stacey Slavutsky Li Chen Leana Ramos Caroline Donahue Jacob Gluski

PACKARD

CENTER

Teresa Dunn lab, USUHS Kenneth Gable

Payam <u>Mohassel</u>. NIH / Johns Hopkins Carsten <u>Bönnemann</u>, NINDS

Bryan Traynor, NIA

Thanks to

Nick Ryba, NIDCR

NIMH Transgenic Core NHLBI Transgenic Core

NICHD Microscopy Core Vincent Schram, Chip Dye

Eunice Kennedy Shriver National Institute of Child Health and Human Development