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Abstract—  TMS is a promising tool for the non-invasive 
stimulation  of the cerebral cortex, with applications in
Neurology and  the Neurosciences. From cable theory, it is  
known that the activation function for neuronal stimulation in 
TMS  may contain  contributions from the electric field and the 
component of the electric field gradient along the direction  of 
the nerve. Here we present a calculation  of the spatial
distribution of the induced electric field by TMS using a finite  
element model of the cerebral cortex and surrounding tissues. 
This distribution allows us to calculate  the  activation function 
for different experimental conditions, and is expected to
provide new insight into the mechanisms of TMS in the cortex.  
——

I.  INTRODUCTION 

TRANSCRANIAL  Magnetic  Stimulation (TMS) is a non 
invasive tool to  stimulate the cerebral cortex. It is based 

on the physical principle of electromagnetic induction, 
where a time varying magnetic field induces an electric field 
within  the tissue. The electric field induced by the magnetic 
field pulse is given by  
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the resultant electric field can be written as  
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where ∇φ  is the electric field due to charge accumulation 
on the volume conductor interfaces. 

The electric (eddy) currents induced in the cortical tissues 
due to the electric field, 

r 
E , change the extracellular electric 

potentials. These changes can cause neuronal membranes to 
depolarize and, if this depolarization reaches a threshold, 
action potentials are fired. 

TMS has applications in many fields, from  Neurology  
(where it  can be used to assess the conduction time of motor 
pathways, helping in the diagnosis  of neurological  
pathologies of the motor system), to the Neurosciences, 
where TMS can temporarily disrupt local cortical function 
and, in that way, contributes to the understanding of the 
involvement of certain cortical areas in  the execution of 
specific brain tasks. 

It is known that the passive electrical behavior of the 
neuron (its passive response to changes in the extracellular 
electric potential) can be modeled by a Cable Equation, 
which in TMS is given by [1],  
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where V is the deviation of the electric potential of the 
membrane relative to its resting potential, when it is 
subjected to an external electric field. The parameters λ  
(space constant) and τ  (time constant) are properties of the 
membrane. The term λ2∂Ex / ∂x is referred to as the
activation function, where x is taken along the direction of 
the axon’s axis.  

For a long, straight axon, and assuming that  V varies 
slowly with  x, the cable equation reduces to 
V = −λ2∂Ex / ∂x . In this case, the gradient of  E

r
 along x, 

appropriately scaled by  λ, is a good measure of the deviation 
V of the potential  of the membrane. On the other hand, at a 


 termination of an axon, the cable equation predicts  that  
V = −λEx (x0 ) , x0  being the position of the axon’s
termination. So, at axonal  terminations, λEx  gives us the 
amplitude of the potential V . For the TMS induced electric 
field, with an effective spatial extent of a few centimeters 
below the scalp, axonal terminations that can be depolarized 
are found inside the cortex only. 

Another situation to consider is stimulation at points 
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where axons bend. These bends have been shown to  be 
plausible regions of membrane depolarization during TMS, 
and in this case it follows from the cable equation  that λEx  
is also the measure of the potential deviation, V , at the 
bending site. 

Finally, it seems that the interface between cortical gray 
matter and white matter might also be a locus of membrane 
depolarization, due to the jump, ∆E x , in the electric field
along the axon’s direction [2]. In this  case, the cable  
equation yields V = −λ(∆Ex / 2)  for the deviation of 
membrane potential at an interface separating tissues with 
different electric conductivities. 

The direction of the axons in the cortex is generally either 
normal to the cortical surface (as is the case for pyramidal 
neurons) or parallel to the cortical surface. For the case 
when the direction x of the axon is along the normal to the 
cortical surface, the derivative ∂Ex / ∂x of Ex  is substituted 

by its general expression 
r
nT ( r∇E )rn , the projection of the 

electric field gradient along n 
r

, n 
r

 being the normal to the 
cortical surface. 

Here we present a calculation of the spatial distribution of 
E n , 

r
nT r

∇E
r

n ( ) and ∆En / 2 in a region simulating a cortical 
sulcus. This information is expected to help shed light on the 
mechanisms of TMS.  

II.  METHODS  

A.   The FEM Model 
The electric field induced within the cerebral cortex by a 

current within a figure-eight coil was calculated using the 
Electromagnetics Quasi-statics Module of Comsol
Multiphysics software. The model of the coil is based on the 
Magstim 70 mm (P/N 9790), as described in [3] and [4]. In 
our model, the coil windings are one-dimensional, but the 
radii of the turns were kept the same as in those references. 
The current in the coil is modelled as sinusoidal and its 
maximum rate of change is 67 A/µs. The coil lies 1 cm 
above the surface of the volume conductor. The volume 
conductor has 3 layers, representing CSF, cortical gray 
matter and white matter (WM), respectively. The cortex 
layer has one sulcus, 3 mm wide and lying 2 cm below the 
upper surface of the volume conductor, as can be seen in 
Figs. 1 and 2. The sulcus extends along the diameter of the 
volume conductor, parallel to the y-axis. The centre of the 
coil (the point between the two wings) is placed at (x,y,z) = 
(0,0,0.01) m. As a first approximation, brain regions were 
modelled as isotropic, with conductivities σCSF = 1.79 S/m, 
σcortex = 0.33 S/m and σWM = 0.15 S/m. The space (air) 
surrounding the conductor has a conductivity given by σAir = 
0.002 S/m. 

Fig. 1.  Geometry of the volume conductor, detail of the side view.  
The coil is placed 1 cm above the volume conductor surface and 
parallel to it. The region of interest of the volume conductor can be 
seen here as the rectangle around the sulcus. 

Fig. 2.  Geometry of the volume conductor. 

The global mesh has 402520 elements. The average 
dimension of the finite elements inside the region of interest 
(a parallelepiped centred at y = 0 and surrounding the 

sulcus) is about 3 mm. Close to the sulcus and within it, the 
average dimension of the elements is 0.5 mm. 

The FEM software solves Maxwell’s equations for the 
potentials

r
 A and φ , using vector elements of first order for 

r
A  and Lagrange elements of first order for φ . The solution  

obtained was post-processed in MATLAB, in  order to  obtain 
the gradient of  

 r
E . 

B.  Data Post-Processing 
The gradient of the electric field along the normal  

r
n  to  

the cortical surface is given by 
r r 
n T r

∇E n =
	( )
  ∂E ∂E ∂E  ∂E ∂E 
2 x 2 y 2 z x y (5)= nx + n + nz + n ny  +  +∂x y ∂y ∂z x ∂y ∂x  

 ∂E ∂E   ∂E y ∂E x z z+ n n  +  + n n  +  .x z y z
 ∂z ∂x  ∂z ∂y   

Since the normal to the cortical surface in our volume 
conductor model has only two components (nx, nz), the 
normal component of the electric field gradient reduces to 
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The solution of the FEM problem ( E x , E z , ∂φ / ∂x ,
∂φ / ∂z and σ) was exported to MATLAB on regular grids 
of 81× 61×101 points, corresponding to the (z,x,y) 
coordinates. The data matrices Ex  and Ez  were fitted 
(along the lines and along the columns) using least-square 
algorithms  written for the purpose. The electric field has a 
continuous and slowly varying component, 

r
− ∂A / ∂t , which 

is independent of the heterogeneities of the volume 
conductor, and can be fitted with  polynomials of low degree, 
n. We fitted  −∂Ax / ∂t with polynomials of degree n = 2 and 
n = 4. On the other hand, across each interface, the 
component of the electric field due to charge accumulation 
(- ∇φ ) experiences a “boost” in its intensity, which is  
positive where σ is lower and negative where σ is higher. 
This boost is predicted to decay exponentially with the 
distance from the interface [2], and therefore we used 
exponential functions as a default when fitting curves for the 
“heterogeneous” part of the electric field components. The 
stimulating coil is positioned parallel to the surface of the 
volume conductor. Therefore, −∂Az / ∂t ≡ 0 , and Ez  
reduces to −∂φ / ∂z . Fig. 3 illustrates the fitting results. 

Fig. 3.  Fit to Ez along z. Each segment of the data (corresponding to 
a specific brain tissue – WM, CSF or cortex) is fitted separately from 
the others. 

After passing the data matrices to the curve fitting 
algorithms, goodness-of-fit was assessed by calculating the 
z-score of a Wald-Wolfowitz runs test [5]. 

The Wald-Wolfowitz runs test determines if the residuals 
of the fit are random. In our curve fitting procedure, if the 
residuals of one fit are not random, the algorithm substitutes 
the default fitting curve for another, more appropriate curve. 
We chose a Lorentzian with an offset and a polyfunctional, 
given by 

a 2 x +( ) = + bx + ce dy x , 
x 

as alternative fitting curves. These curves were suggested by 
examination of some data sets, representative of  the 
variation of the electric field in the regions where the 
exponential  function does not perform well, to online curve 
fitting software (www.zunzun.com) that finds, for specific 
data, the best fitting curve from a large set of functions. 

The partial derivatives of  Ex  and E z  were then obtained
through analytic differentiation of the curves fitted to the 
data.  

III.  RESULTS  
The activation function has been calculated in the region 

of interest (ROI) of the volume conductor. In Figs. 4, 5 and 
6, we display the functions λE n , 

r
λ2 (rnT (  

∇E)rn) and
λ(∆En / 2) , the first two on a surface inside the cortex, and 
the other on the interface between the cortex and white 
matter. We used  λ  = 0.002 m for the space constant. The 
gradient  (2 r r

λ nT r
∇E n( ) ) will be referred here simply as the 

activation function. The results suggest that the spatial  
distribution of the activation function is focal, located along 
the lip of the gyrus, as can be seen in Fig. 4. This gradient 
might produce activation of the initial segment of pyramidal 
axons located along the lip of the gyrus. The maximum 
expected membrane potential deviation due to  

r
λ2 (nT ( r ∇E)rn)  

on the surface of Fig. 4 is 41 mV  and this value is thought to 
be higher than the average threshold for action potential  
firing, which is thought to be of about 20 mV [6].  

Fig. 4. The activation function inside the cortex. The maximum value 
on this surface is 49 mV; the minimum value is -41 mV. 

Concerning λEn (Fig. 5), its distribution is broad and its  
maximum value (124 mV) occurs just beneath the lip of the 
gyrus, in the plane y = 0. This  function might  be responsible  
for the stimulation of pyramidal axons at the bends, outside 
of gray matter. 

As for λ(∆En / 2)  on the interface cortex-WM (Fig. 6), 
the maximum expected membrane potential deviation due to  
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Fig. 5.   λEn inside the cortex. The maximum value on this surface is 
124 mV and the minimum value is -123 mV.  

Fig. 6.   λ(∆En/2) on the cortex-WM interface. The maximum value on 
this surface is 49 mV and the minimum value is -52  mV. 

this function is 52 mV and occurs on the wall of the sulcus. 
The function λ ∆En / 2( ) is expected to be responsible for 
the depolarization of pyramidal axons, at the axonal segment  
crossing the cortex-WM interface. 

IV.  DISCUSSION  
We  calculated  the spatial distribution of the activation  

function of TMS using an FEM model of the cerebral  
cortex. 

The results obtained here represent an improvement in  the 
prediction of the intensity of  the electric field induced by 
TMS on a target region of the cortex. Furthermore, these 
results  help us to understand the importance of the geometry  
of the cortex in the distribution of the induced electric field 
and electric field gradient. In particular, the high amplitude 
of 	 2 r r r

λ (nT (∇E)n)  comparable to that of λEn  is a
consequence of the curved geometry of the cortex. 

 For the stimulation  of  motor cortex, which is the gold  
standard of TMS, the predominant cortical responses to  
TMS are I waves and it is thought  that  these waves are 
primarily generated by intracortical interneurons  and  
corticocortical association fibers [7]. Concerning 
intracortical  interneurons, these cells have their axons 
parallel to the cortical surface. Therefore, in order to study 
the stimulation of these fibers by TMS, it will be necessary 
to calculate the projection of  E 

r 
 along the tangential  

direction to the cortical surface, which was not done here. 
The constraint of boundaries from nearby gyri is expected 

to distort the electric field even more, so for a complete 
knowledge of the distribution of the activation function of 
TMS, it will be necessary to calculate this distribution on 
models with a more realistic description  of  the cortical 
geometry. Such information could be obtained from MRI 
and/or CT data acquired during routine brain scanning 
procedures. 

V.  CONCLUSION  
We  calculated  the spatial distribution of the activation  

function of TMS on a finite element model of a cortical  
sulcus. The results obtained here are expected to improve 
our understanding of the mechanisms of neuronal  
stimulation by TMS. 
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