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Introduction      
The selection of a distance function (metric) between tensors is the first step to developing a statistical  framework to characterize their variability, permitting  
group comparisons and statistical  inferences based on the entire tensor. Such a tensor-variate  statistical  framework would subsume univariate statistical 
distributions  for scalar tensor-derived quantities, such as the FA or ADC; those can only account for a fraction of the variability. A tensor-variate statistical 
framework was proposed in [1], where a Euclidean distance was used to estimate a 6x6 covariance matrix  for diffusion tensor data. Recently, a new approach  
to measure distances between tensors was proposed,  which assumes they reside on a  Riemannian manifold that requires an affine-invariant metric [2-4]. The  
Log-Euclidean distance was then shown to approximate the affine-invariant metric without the high computational overhead [5]. Since the Log-Euclidean  
metric resides on a Euclidean manifold, calculation of  its covariance matrix  is possible [6].  Here we compare variability maps  obtained for the Euclidean and  
Log-Euclidean metrics using  synthetic and real data. We show that the Log-Euclidean distance does not adequately model the effect of Rician  noise in  
diffusion weighted imaging data. The Log-Euclidean variability maps are over-estimated in white matter, and underestimated in CSF. We suggest that the  
Euclidean metric provides a more democratic measure of tensor variability appropriate for tensor based group statistics.  

Methods  
High resolution DTI was acquired on a 16-channel 3T scanner (GE-Signa) using a  PGSE-EPI sequence with TR/TE of 8500/80.9 ms, matrix  size of 128x128 
and 1.4mm3 voxel  size. In order to improve SNR measurements were repeated 8 times. All results reported here relate to a single slice from this dataset. All  
DWIs were corrected for head motion using rigid body  transformations (SPM2, UCL) and the gradient orientations were compensated for solid body rotation.  
A tensor map was calculated for each repetition, and  a mean tensor map was calculated  from all  the DWIs. Tensor estimation  was  done using a  Log-Euclidean 
fit [7] that assures all tensors are positive-definite.  We preformed Monte-Carlo (MC) simulations to  synthesize 100 noisy replicates of the mean tensor map.  
The 6x6 Euclidean  (CEuc) and Log-Euclidean (CLog-Euc) covariance matrices were estimated using  
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The Trace of the covariance matrix is then plotted as  a variance map.  

Results and Discussion  
The synthetic data consists of  Rician noise, homogenously spread over the entire image; this type of  noise is expected in MR measurements due to thermal 
noise in the RF receiver. The Euclidean  variance map (Fig. 1a) for the simulated data resembles the ADC contrast; it shows  high  variance in CSF  areas  
whereas white and gray matter have the same  variance, which  is  lower than  in  CSF. This  is  in-line with  noise properties of DWIs since the DW signal  in CSF  
is  lower, hence SNR  is  lower and expected variability  is higher. The Log-Euclidean  variance map (Fig. 1b) resembles the FA; it  shows high  variance in  white  
matter areas. Since it approximates affine-invariance, the Log-Euclidean metric maps tensors with extreme eigenvalue ratios to  infinity. Such tensors will be a  
large distance from other tensors, regardless of the type of  noise. Therefore the Log-Euclidean  variance map is over-estimated  in anisotropic white matter  
voxels. The 8-repetition data  introduces new types of noise, such as multi-channel reconstruction, misalignment across repetitions, non-linear motion and the  
effect of dynamic biological processes, which should affect the variance maps. As such both variance maps present much higher variance than  in the  
synthesized experiment. The Euclidean  variance map (Fig. 2a) depends  on the location within the image; this  is the effect of the multichannel reconstruction,  
which provides higher SNR  for the periphery, which is closer to the coils. This artifact dominates the Rician noise. The Log-Euclidean map is again very  
similar to an FA map, suggesting that additional noise and artifacts are less dominant than the mapping of extreme eigenvalued  tensors to infinity.  
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Figure 1: Synthetic data. M C simulations with  Rician noise  yield  
the Euclidean (A) and the  Log-Euclidean (B) variance maps. The  
Euclidean map depends on SNR and resembles an ADC map.  
The Log-Euclidean map over-estimates the variance in  
anisotropic white  matter. 
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Figure 2: MRI data. 8 repetitions of a DTI experiment yield the  
Euclidean (A) and the Log-Euclidean (B) variance  maps. The  
Euclidean map affected by the multichannel reconstruction. The  
additional  noise is  less dominant in the Log-Euclidean map t han  
the over estimation of variance in anisotropic white matter.  

 

Conclusion  
The Log-Euclidean distance  is over-estimated in anisotropic white matter areas. As a result  the between-repetition variability  for white matter areas  is biased,  
which makes  it  harder to infer statistical changes. This  is  not the case for the Euclidean distance, which depends on  the bulk  diffusion.  While the affine-
invariant method is mathematically appealing  for tensor manipulation, the findings presented here along with recent observations regarding the affine-
invariant and Log-Euclidean metrics [8-9] lead us to the conclusion that the Affine-invariant and Log-Euclidean metrics are not appropriate for the analysis of  
the variability of diffusion tensor MRI data.   
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