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microvasculature permeabil i ty.  microvasculature permeabil i ty.  Recently,  i t  was shown to reveal  metabolic  act ivityRecently,  i t  was shown to reveal  metabolic  act ivity
using the shutter-speed pharmacokinetic paradigm (SSP),  in which steady-stateusing the shutter-speed pharmacokinetic paradigm (SSP),  in which steady-state
intra/extracel lular water exchange kinetics was incorporated into DCE-MRI dataintra/extracel lular water exchange kinetics was incorporated into DCE-MRI data
analysis.  Interesting insights into DCE-MRI signals come from modeling theanalysis.  Interesting insights into DCE-MRI signals come from modeling the
extravascular t issue MR signal .  The questions addressed here are,  “When canextravascular t issue MR signal .  The questions addressed here are,  “When can
extravascular extravascular H2O longitudinal  magnetization recovery from inversion/saturationH2O longitudinal  magnetization recovery from inversion/saturation
sti l l  be described by a single-exponential  process,  and when can thesti l l  be described by a single-exponential  process,  and when can the
intra/extracel lular water exchange kinetics be accurately determined?”intra/extracel lular water exchange kinetics be accurately determined?”

PurposePurpose
Dynamic-contrast-enhanced MRI (DCE-MRI) is a widely used clinical imaging tool.  A quantitative
DCE-MRI protocol is a pharmacokinetic study. A paramagnetic contrast agent (CA) is injected
intravenously and transiently extravasates only to the extracellular tissue spaces, a process
described by Kety-Schmitt (KS) pharmacokinetic law (Figure 1Figure 1). Interesting aspects of the analysis
of DCE-MRI signals come from modeling the extravascular tissue MR signal. Typically, a tracer
pharmacokinetic paradigm (TP) has been used,  where longitudinal magnetization, M, recovery from
inversion/saturation is assumed to be described by an empirical single exponential process with
apparent relaxation rate, . However, this ignores an important feature of water
compartmentalization, i.e., finite steady-state exchange of intra- and extracellular water molecules.

In 1999, two-site-exchange (2SX) expressions for steady-state intra/extracellular water exchange
kinetics (Figure 1Figure 1) were incorporated into DCE-MRI data analysis, via the shutter-speed
pharmacokinetic paradigm (SSP).  SSP-based analysis not only characterize microvasculature, like
TP, but also reveal cellular metabolic activity.  In SSP models, M is described with a bi-exponential
function, which could admit two MR signals with different apparent relaxation rate constants. The
questions addressed here are the conditions when M relaxation can still be described as a single-
exponential process and when the intra/extracellular water kinetics can still be accurately
determined under SSP.

MethodsMethods
To illustrate the effects of varying [CA ] during DCE-MRI, simulations with the following 2SX
parameters (Figure 1Figure 1): f  = 0.80, R  = 0.55 s , and r  = 3.94 s mM . The values were varied from
0 to 3 s , with 0.5 s  steps, and the [CA ] values were varied from 0 to 6 mM. The simulations were
run at two different intrinsic intracellular H2O relaxation rate constants: R  = 0.55 and 2.00 s . In
all simulations, the small microvascular plasma (and blood) signal was ignored.

The 2SX model describes intra- and extracellular M with an empirical bi-exponential function,

 (1)

where  is the magnetization at recovery time , , at equilibrium, α the effective flip angle of
the inversion/saturation pulse, and  and  are the small and large apparent relaxation rate

constants, respectively, and  is the apparent fractional intensity of the signal with . The

analytical expressions for Eq. (1) quantities given in terms of physical quantities are described in
Figure 2Figure 2.

ResultsResults
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Figure 1Figure 1. Shutter-Speed
Pharmacokinetic Paradigm for
DCE-MRI

Figure 2Figure 2. Analytical solution for
the 2SX model.

Figure 3Figure 3. Analytical 2SX
solutions of the empirical f
and f , the relative apparent
fractions of the R and R
(up), and the apparent relaxation
rate constants R  and R
themselves (down) at various
[CA ] and k  values, for κ ≡ |R
– R | = 1.45 s  (A) and 0 s  (B).
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The analytical 2SX solutions for , , and  as functions of [CA ] and k  are illustrated in

Figure 3Figure 3. Without any exchange, both  and  are [CA]‑independent (horizontal dashed

lines). With exchange, both parameters are strongly dependent on [CA ] and k  values. For 
 s ,  is equal to 1.0 at [CA ] = 0 mM for any finite k  value. For 

s ,  approaches 1.0 at [CA ] = 0.37 mM (  s ) for any finite k  value. In both cases,
the recovery time-course could be well approximated with the single-exponential expression Eq. (1)
with .

DiscussionsDiscussions
Figure 3Figure 3 illustrates important theoretical features of the 2SX model. The abscissa is a measure of
the longitudinal shutter-speed ( ) for this system.  For simulations at 

 and 1.45 s ,  approaches 0 as  approaches zero. This has been traditionally

called the fast‑exchange-limit [FXL]. However, the FXL term comes from NMR in chemistry, where
reactions can be accelerated or slowed, i.e.,  can be increased or decreased, respectively. F igureFigure
33 makes clear the  vanishing is independent of the  value at finite . Thus, the FXL label is

misleading. It is more descriptive to refer to the left ordinate as the vanishing-shutter-speed-limit
[VSSL]. This is important because the TP represents a special case of the SSP – in the limit of a short
SS. It has been shown algebraically that as  vanishes,  approaches the f-weighted R , R

average .  Any DCE-MRI model within the TP is the special VSSL case of the analogous

shutter-speed model.

In most practical situations, ( ) is small in tissue but > 0 and [CA ]  rarely exceeds 2
mM.  In these cases,  is very small, and its signal also likely suffers disproportionate transverse

relaxation quenching .  Thus, the component can reasonably be neglected. In this

very common regime, the recovery is mono-exponential, but the relaxation rate constant is 

(F igure 2Figure 2), not  defined in TP model

 = r [CA ] +  (2)

This can be called the vanishing shutter-speed regime [VSSR]. Measurements in blood suggests the
VSSR extends to [CA ] past 20 mM; most likely due to transverse quenching.  This is important
because  is only accessible in the VSSR but not the VSSL.
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