Anemia Management of Pediatric Patients With Stages II-V Chronic Kidney Disease (CKD)

Frederick Kaskel, MD, PhD Director of Pediatric Nephrology & Vice Chair of Pediatrics, Children's Hospital at Montefiore/Albert Einstein College of Medicine, Bronx, NY

Background: Adult & Pediatric

Anemia affects over half of the 10 million Americans with CKD.

- Associated with increased mortality, hospitalizations, risk of progression of CKD, left ventricular hypertrophy, & adverse effects on quality of life in adults & children/adolescents.
- Treatment with erythropoiesis stimulating agents (ESAs) has ameliorated many of the adverse effects of anemia in CKD.

Background: Adult & Pediatric

Recent RCT in CKD in adults showed increased risk of ESAs & cardiovascular events & mortality at higher hemoglobin (Hgb) targets >11 g/dL.

- Black Box warning issued by the FDA that called into question the safety of these agents in adults & children.
- Recommended starting ESA treatment for Hgb < 10g/dL in order to avoid the need for red blood cell transfusion; no target Hgb goal defined.

Gaps in Knowledge

- The safety concerns upon which the revised targets were based came from studies only in adults with CKD/ESKD with outcomes (severe cardiac events, mortality) that may not be applicable to pediatric patients with CKD/ESKD.
 - Pediatric patients with CKD may need higher doses of ESAs & different target Hgb values in order to achieve optimal outcomes for growth, neurocognitive development & cardiovascular function.

Gaps in Knowledge

No clinical trial assessing the optimal dosing and safety of ESAs in children with CKD have been performed.

- Increased risk for hospitalizations & mortality associated with a Hgb<10 g/dL.
- No data the impact of gender/age, weight, stage of CKD, use of concurrent medications, PK & PG measurements on ESA's dosing & effect despite their use in 95% of children with CKD.
- Determination of the appropriate target Hgb levels of these agents in children with CKD is unknown.

Short-term Outcomes of Anemia Treatment With ESA's Needing Further Investigation in Children:

- Prospective studies of the safety/efficacy of dosing strategies for age/gender specific Hgb levels >95th% based on stage of CKD.
- Determination of target Hgb levels required to achieve maximal growth, neurocognitive development & avoidance of cardiovascular risks.
- PK & PG on ESA dosing & medication interactions.

Ancillary Studies

- Identification of new biomarkers to assess the efficacy and safety of ESA dosing in CKD/ESKD.
- Outcome & comparative effectiveness of therapies including determination of quality of life assessments in children with CKD/ESKD receiving ESAs.

Collaborators

- North American Pediatric Renal Trials and **Collaborative Studies (NAPRTCS)**
- NIH Chronic Kidney Disease in Children Longitudinal Cohort Study (CKiD)
- Pediatric Trials Network
- Investigators from other disciplines (cardiology, endocrinology, neurology, epidemiology)

Pharmacokinetics of Life-Saving Medications in Critically Ill Children with Acute Kidney Injury Receiving Continuous Renal Replacement Therapy

Stuart L. Goldstein, MD Director, Center for Acute Care Nephrology

Cincinnati Children's Hospital Medical Center Founder and Principal Investigator The Prospective Pediatric CRRT Registry Group

Acute Kidney Injury in Children

Epidemiology

- More often a result of another system/organ illness or its treatment¹
- Increasing incidence/prevalence in ICU population^{2,3}

Treatment

- Currently, mostly supportive
- Continuous renal replacement therapy (CRRT) most common RRT modality provided to children⁴
- 1. Hui-Stickle, Brewer, Goldstein AJKD 2005
- 2. Akcan-Arikan et al Kid Int 2007
- 3. Schneider et al Crit Care Med 2010
- 4. Warady, Bunchman Ped Neph 2000

Outcomes: Gaps in Knowledge

- Mortality still very high for children with AKI who receive CRRT despite technological advancements
- No comprehensive, validated data to guide dosing of most medications in children who receive CRRT
- GAP in knowledge to treat critically ill children
 - In vitro data
 - Extrapolated from patients with ESRD
 - Extrapolated from adult AKI studies

Demographic Characteristics of Pediatric Continuous Renal Replacement Therapy: A Report of the Prospective Pediatric Continuous Renal Replacement Therapy Registry

Jordan M. Symons, * Annabelle N. Chua, * Michael J.G. Somers, * Michaele A. Baum,* Timothy E. Bunchman, * Mark R. Benfeld, * Patrick D. Brophy,* Douglas Blowey, ** James D. Fortenberry, ** Deepa Chand,# Francisco X. Flores,⁵⁸ Richard Hackbarth,* Stever R. Alexander,[#] John Mahan,** Kevin D. McBryde,** and Stuart L. Goldstein*

The Patients Have OTHER Chronic Illness

- ppCRRT Registry Group
- 376 children from 13 US centers who received CRRT
- Chronic kidney diseases only 8% of population
- We don't know how to dose life-saving medications for the entire pediatric critical care patient population with AKI on CRRT

Table 5. Principal diagnoses and survival^a

Parameter	п	Survivors	% Survival
Sepsis	81	48	59
Bone marrow transplant	55	25	45
Cardiac disease/ transplant	41	21	51
Renal disease	32	27	84
Liver disease/ transplant	29	9	31
Malignancy (no tumor lysis syndrome)	29	14	48
Ischemia/shock	19	13	68
Inborn error of metabolism	15	11	73
Drug intoxication	13	13	100
Tumor lysis syndrome	12	10	83
Pulmonary disease/ transplant	11	5	45
Other	7	5	71

 $^{a}P(\chi^{2}) < 0.001.$

Symons J.M., et al. (2007). Demographic characteristics of pediatric continuous renal replacement therapy: A report of the prospective pediatric continuous renal replacement therapy registry. *Clinical Journal of the American Society of Nephrology*, 2(4):732–8.

22.4 ml/min/1.73m² + 2 x CL (cr) + UF

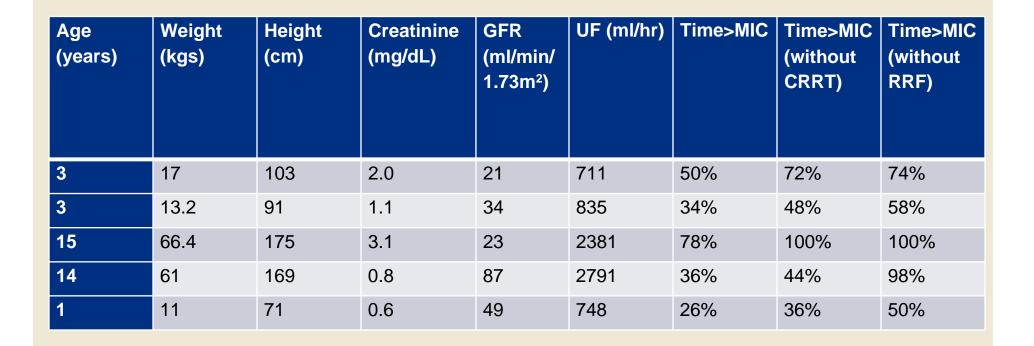
Population Pharmacokinetics

Model

- $CL_{(Total)} = \beta_0 + \beta_1 CL_{(creatinine)} + \beta_2 UF$
- Vd (L/kg) = β_0 + (% volume overload) β_2
- Other variables to consider: Age, albumin, modality, septic vs non septic

Short-term Goals

- B
- I. Devise highly predictive in silico drug disposition models with an area under the curve (AUC) within 20% of what will be tested in the subsequent aims of the study.
- 2. <u>Validate models *in vivo* to optimize dosing to provide the clinically desired medication level and physiologic effect.</u>
- 3. Refine models with *in vivo* PK/PD validation profiles



Preliminary Data: Short-term Goals Using the ppCRRT study

- Use parameters abstracted literature and the derived model to estimate meropenem clearance
- Apply model to population of interest: ppCRRT study
 - 372 patients
 - Database includes CRRT settings, residual renal function, age, weight

Determine adequate dosing regimen by using clinical trial simulations

Preliminary Data: the ppCRRT Study

Current Structure

- This study will be a pilot to set up the paradigm for multicenter study
- The network is in place (ppCRRT): 4 centers invested in current project (Thrasher Grant application)
- The PK/PD expertise is in place (Sander Vinks, PhD)

Future Directions

For medications with unknown PK

- Any child, anywhere with AKI receiving CRRT (or not)
- Clinician collaborator can access web-based sampling requirements
- Collect samples and send to CCHMC for PK analysis

For medications with validated PK

- Any child, anywhere with AKI receiving CRRT (or not)
- Clinician can access web-based dashboard and enter patient specific parameters to guide dosing

Anticoagulation in Children with Kidney Disease

Stuart L. Goldstein, MD

Frederick Kaskel, MD, PhD

Hypercoagulation Issues in Pediatric Kidney Diseases

Pediatric End-Stage Kidney Disease

- Catheter thrombosis
- Fistula/Graft thrombosis
- Prevents delivery of maintenance dialysis
- Associated with increased morbidity

Pediatric Acute Kidney Injury

- Catheter/CRRT circuit thrombosis
- Prevents delivery of life-saving therapy

Nephrotic Syndrome

- Hypercoaguable state
- Venous and arterial thromboses
- Limb loss and stroke

Gaps: Approved Therapeutic Options

- No medication is approved to prevent or treat vascular access thrombosis in children.
- No medication is approved for CRRT to anticoagulate CRRT circuits.
- Few data describe to the best thrombosis prophylaxis or treatment regimens for nephrotic syndrome states.

Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee

Met November 2, 2011

- Identification of strategies to encourage and facilitate studies of anticoagulants in children that will result in
 - informative pediatric labeling
 - appropriate endpoints for studies of anticoagulants in pediatric patients
 - the role of PK/PD studies to support a pediatric indication for anticoagulants.

Medications of Interest for Each Patient Population

ESKD receiving maintenance HD

- Citrate
- Heparin

AKI CRRT

- Citrate
- Prostacyclin

Nephrotic syndrome

– LMWH

Studies Needed

R

- Epidemiology/surveillance of AKI, CKD/ESKD and nephrotic pediatric cohorts to identify the effects of age, gender, weight, stage of CKD, and use of other medications on the incidence/prevalence of thrombosis.
- Prospective clinical trials aimed at determining the ideal anticoagulation in children with AKI, CKD/ESKD, and nephrotic syndrome as determined by safety and efficacy metrics.
- Performance of pharmacokinetic/pharmacogenomics measurements for determination of optimal dosing strategies of anti-coagulation therapies in AKI, CKD/ESKD and nephrotic children

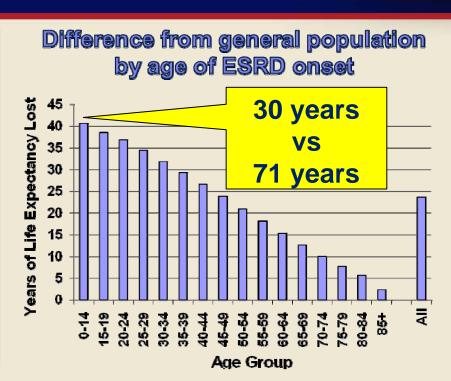
Ancillary Studies

R

- Identification of new biomarkers to assess the efficacy and safety of anti-coagulation therapies in AKI, CKD/ESKD, and nephrotic children.
- Impact of unique PK/PGen characteristics on the efficacy and safety of anti-coagulation therapies to prevent and lower the risk for thrombosis.

Reduction of Future CV Risk and Management of Dyslipidemia / Hyperlipidemia in Children with CKD

Jeffrey M. Saland, MD Chief, Pediatric Nephrology The Mount Sinai School of Medicine New York, NY


The Problem: CV Outcomes After Childhood CKD

Children with moderate CKD reaching ESRD: 50% in 5 years 70% in 10 years

#1 cause of death in young adult survivors of ESRD:CV events (frequently CVA)

CKiD Study Fact: **45% persistent dyslipidemia**

Ardissino G., et al. (2003). Epidemiology of chronic renal failure in children: Data from the ItalKid project. *Pediatrics*, 111(4 Pt 1):e382–7. North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). (2008). *NAPRTCS 2008 Annual Report*. Available at: https://web.emmes.com/study/ped/annlrept/Archiveannlrept.html. Accessed March 5, 2012.

U.S. Renal Data System (USRDS). (2007). USRDS 2007 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States (Includes Special Request, Table H.31 Combined Transplant and Dialysis Groups). Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.

Groothoff J.W., et al. (2002). Mortality and causes of death of end-stage renal disease in children: A Dutch cohort study. Kidney International, 61(2), 621-9.

Gruppen M.P., et al. (2003). Cardiac disease in young adult patients with end-stage renal disease since childhood: A Dutch cohort study. *Kidney International*, 63(3), 1058–65.

McDonald S.P. and Craig J.C. for the Australian and New Zealand Paediatric Nephrology Association. (2004). Long-term survival of children with end-stage renal disease. New England Journal of Medicine, 350(26):2654–62.

Saland J.M., et al. (2010). Dyslipidemia in children with chronic kidney disease. Kidney International, 78(11):1154-63.

SHARP Study of Heart and Renal Protection

- Recent double blind placebo-controlled RCT, Age ≥ 40
- Simvastatin 20mg / Ezetimibe 10 mg (Vytorin[®])
- N ~ 9000 (~3000 on dialysis)
- NO entry criteria for dyslipidemia
- Results: Lower LDL, fewer "major atherosclerotic events"
 - Effect ~ 30-40 events per 1000 patients treated for 5 years
 - "Yes and no" conclusions in dialysis patients
 - Fewer events result mainly from less revascularization procedures
 - No change in mortality
- Vytorin[®] new labeling 11/2/11 for CKD
 - Except for dialysis patients

Baigent, C, Landry M., KI 2003 Baigent, C, et al. Lancet 2011

Short Term Safety/Dosing: Key Needs:

- No PK or safety data directly from children with CKD -decreased GFR ("classic CKD") and/or -significant proteinuria / hypoalbuminemia (nephrotic syndrome)
- Differences from children with FH / adults with CKD
 –Currently labeled indications for statins or simva / ezetimibe
- Unknown safe lower limits of lipid levels by age
- Little or no data derived directly about how therapeutic agents interact with other agents commonly used in children with CKD

Short Term Study Recommendations:

- PK, pharmacogenomic, and safety studies in children with CKD or ESRD; broadly inclusive
 - Begin with: simva+ezetimibe, other statins, omega-3's, sevelamer.

Define efficacy target

- 1 mmol/L (39 mg/dl) drop in LDL-C (correlates to ~25% lower event risk)
- Or less than 50th percentile for age

Entry NOT based on lipid levels

- Except exclude those with low non-HDL-C (say < 50th percentile)

Study mechanisms of dyslipidemia in pediatric CKD

- Different than FH (only pediatric labeling currently)
- Can be built into PK studies
- Increase prospects of best directed therapy

Responsible Planning: Gaps in Long-Term Safety

Long term safety concerns:

- Potentially unknown: need to systematically identify
- Cancer ? (no sign of it in SHARP but only 5 years)
- Development (e.g. neurocognitive or pubertal effects)
- Coexisting issues (e.g. HTN, acidosis, bone disease)

Responsible Planning: Impediments for Study of Long-Term Effects

Need surrogate / intermediate markers of clinical efficacy

Lipid levels are a starting point but not sufficient The atherosclerotic event "risk horizon" is distant

- CV Risk at age 10-30 is a log-scale lower than age > 40

Unknown time course of treatment benefit

- Between birth and age 40, when to start treatment?
- If continuous and cumulative risk reduction:
 - » Start as early as possible to realize most benefit
- If limited or finite maximal risk reduction?
 - » Avoid early treatment for no benefit
 - » Match the time to maximum benefit with the risk horizon

Responsible Planning: Goals of Long-Term Study

- Validate surrogate markers of future CV disease
- Define the risk horizon of atherosclerotic and nonatherosclerotic events
- Profile subjects at regular intervals over 10-20-30 years
- Track CV and non-CV outcomes
- Focus NOT on any particular stage of CKD, but rather the individual who over time might pass through multiple stages of CKD or ESRD.

Responsible Planning: Extend CKiD Study to Meet Goals

- CKiD does NOT follow children after ESRD
- Lost opportunity to study CV event outcomes and to quantify atherosclerotic burden in a group where pediatric status is *extremely* well recorded.
- CKiD could begin yielding data within a few years.
 - Existing cohort so most cost effective
 - Need to extend the duration of the study
 - Need to extend eligibility to keep subjects with ESRD

