Low Frequency Broadband Actuator for MRE

K.N. Magdoom^{1,2}, Thomas T. Jones³, Marcial Garmendia – Cedilos³, Randall Pursley³, Thomas Pohida³, and Peter J. Basser¹

¹Section on Quantitative Imaging and Tissue Sciences, *Eunice Kennedy Shriver* National Institute of Child Health and Human Development, Bethesda, MD, USA ²The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA ³National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA

INTRODUCTION

- Low frequency elastography is important for deducing material properties of tissue whose characteristic time scales are much longer than the frequencies typically probed in MRE, including viscoelastic and poroelastic properties.
- Low frequency MRE is however challenging due to the large and stable displacements required to match the NMR sensitivity obtained at high frequencies.
- In this study, we report the development of a new low-frequency broadband (0 several kHz) actuator to perform MRE within a micro-imaging MRI scanner.

MATERIALS AND METHODS

- Sample : Bilayer agarose (0.1% bottom and 0.12% top)
- 100 µm free stroke length piezo from Thorlabs

National Institutes of Health

Turning Discovery Into Health

- Piezo interfaced with gel using 3D printed plunger and ran at 10 Hz
- MRE experiment performed at Bruker 7T using 3D pulsed gradient spin echo to measure displacement profile at 10 ms intervals.
- Isotropic shear modulus calculated from the measured data using algebraic Helmholtz inversion.

Experiment instrumentation setup

Close up view of piezo actuator

RESULTS AND DISCUSSION

Vector displacement data of the gel (µm) with blue arrows showing vector direction

CONCLUSIONS

- Excitation mode complex and uniform across the field of view
- Two different gel concentrations distinguished based on their differences in shear modulus
- Future work involves extracting viscoelastic and poroelastic gel properties.