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Abstract To extend our recent paper dealing with the cable properties and the 
conduction velocity of nonmyelinated nerve fibers (Bull. Math. Biol. 64, 1069; 
2002), the behavior of the local current associated with the rising phase of a prop
agating action potential is discussed. It is shown that the process of charging the 
membrane capacity by means of the local current plays a crucial role in deter
mining the velocity of nerve conduction. The symmetry of the local current with 
respect to the boundary between the resting and active regions of the nerve fiber is 
emphasized. It is noted that there are several simple quantitative rules governing 
the intensities of the capacitive, resistive and total membrane currents observed 
during the rising phase of an action potential. 
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1. Introduction 

In 1977, using squid giant axons available at Woods Hole, MA, we closely ex
amined electrophysiological properties of the axon membrane under intracellular 
perfusion and found that there is a simple quantitative relation between the con
duction velocity and the electrical parameters of the axon (Matsumoto and Tasaki, 
1977). We derived the following equation relating the conduction velocity v with 
the membrane capacity per unit area, C, the resistivity of the axon interior, ρ, the  
unit area membrane resistance at the peak of excitation, R∗, and the axon diame
ter, d: 

/
1 d 

v = (1)
C 8ρ R∗ 

This equation adequately describes the conduction velocities of nonmyelinated 
nerve fibers in general. 
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Subsequently, it was found that the production of action potentials in squid gi
ant axons and other excitable cells is accompanied by simultaneous swelling of 
the cortical layer of the cells (Iwasa and Tasaki, 1980; Tasaki, 1999). Further
more, it became evident that this swelling is a manifestation of an extremely 
sharp structural transition associated with a Ca–Na ion-exchange process tak
ing place in the superficial gel layer termed “axolemma-ectoplasm complex” of 
the axon (Metuzals et al., 1981). The conclusion drawn from these findings is 
that the process of nerve conduction is nothing but a continuous displacement 
of the boundary between the active (excited) and resting regions of the axon in
duced by the local current (Hermann, 1879) linking these two structurally distinct 
regions. 

The present note supplements our recent article published in this Bulletin 
(Tasaki and Matsumoto, 2002) dealing with the cable theory of nerve conduction. 
We first discuss several aspects of the local current in intracellularly perfused squid 
axons that have not been discussed previously. Then, we treat the linkage between 
the process of nerve conduction and the distribution of the local current in the 
vicinity of the boundary between the active and resting regions of the axon. 

2. The local current and the membrane capacity 

The experimental basis of the following mathematical analysis of the local cur
rent is derived from the studies of squid giant axons under intracellular perfusion 
(Matsumoto and Tasaki, 1977). The schematic diagram at the top of Fig. 1 illus
trates the cortical layer of a giant axon (of which the endoplasm had been sur
gically removed beforehand), separating the internal perfusion solution (400 mM 
KF, pH 7.3) from the external artificial sea water (containing 423 mM NaCl and 
58 mM divalent cations, Mg2+ and Ca2+). 

Note that, under this continuous intracellular perfusion, the Na-ion concentra
tion inside the axon is kept at zero and the K-ion concentration outside the axon 
can be maintained also at zero. Under these conditions, the electric resistance of 
the cortical polyanionic gel layer of the axon is related, in accordance with the 
well-known Nernst–Einstein equation, directly to the fluxes of Na- and K-ions in
terdiffusing through the layer (see Tasaki, 1982, p. 219). Since the mobilities of the 
divalent cations in the layer are far smaller than those of monovalent cations, the 
intensity of the ohmic (resistive) component of an inwardly directed membrane 
current—observed during the rising phase of the action potential—is considered 
to be given approximately by (JNa–JK)F, where  J’s represent the fluxes of these 
monovalent cations and F is the Faraday constant. 

Suppose that we deliver a brief electrical shock to the axon near one of its ends 
and evoke a wave of gel swelling in association with the production of a propagat
ing impulse. Now, imagine that we observe the rising phase of this swelling through 
a microscope that is moving along with the traveling excitation wave. Under these 
circumstances, the position of the boundary between the active and resting regions 
of the axon is expected to be seen as remaining stationary. The diagram of an elec
trical network in Fig. 1, bottom, represents the electrophysiological properties of 
the superficial polyanionic gel layer (for short designated as “membrane”) in the 
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Fig. 1 Electrical network used to describe the physiological behavior of a squid giant axon that is 
intracellularly perfused with a KF solution and immersed in a large volume of artificial seawater. 
The network represents the electric property of the superficial gel layer (axolemma–ectoplasm 
complex) in the vicinity of its boundary between the active (excited) and resting regions. Ea and 
Er represent the membrane-emf in the active and resting state, respectively; r ∗ /,m X and rm/,X
are the membrane resistances of elements of the axon of ,X (infinitesimal) in length in the two re
gions; cm,X and ri,X denote the membrane capacity and the longitudinal resistance of a portion 
of the axon of length ,X. 

vicinity of the boundary between the active and resting regions of the axon under 
these conditions. 

In the following analysis, X denotes the position of a point measured along the 
axon from the boundary that is moving at a constant velocity v. The portion of 
the axon between X∗ 

o and Xo constitutes the transitional zone between the active 
and resting regions. The distribution of the transmembrane electric current, gen
erated as a consequence of a difference between the membrane emf in the active 
region, Ea, and that in the resting region, Er, is shown by the small arrows in the 
diagram. 

As in our previous publication (Tasaki and Matsumoto, 2002), the differential 
equation describing the potential difference across the membrane in the resting 
state, V, is given by 

1 d2V dV 1 + cmv − (V − Er) = 0
ri dX2 dX rm 

(2)

where ri represents the longitudinal resistance (ri = 4ρ/πd2), cm is the membrane 
capacitance per unit length (cm = Cπd), and rm is the unit length membrane resis
tance at rest (rm = R/πd). The solution of this equation is 

V = Er + (V0 − Er)e−ξ(X−X0) (3) 
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where V0 is the potential at the receding end, X0, of the resting region and ξ , the  
reciprocal of the space parameter, is given by 

/( )2cmriv cmriv ri 
ξ = + + (4)

2 2 rm 

Analogously, the distribution of the potential in the active region is described by 

1 d2V dV 1 + cmv + (Ea − V) = 0
ri dX2 dX r ∗ 

m 

and by its solution 

−η(X0 
∗−X)V = Ea − (Ea − V0 

∗) e (6) 

where V0
∗ represents the potential at the advancing end of the active region, X∗

o
 , 

r  
m
∗ (  = R∗ /πd) is the resistance of the membrane in its active state and the reciprocal 

of the space parameter of the active region is given by 

/( )2cmvri cmvri ri 
η = − + + (7)

2 2 r ∗ 
m 

[Note that the active region extends from X = X0
∗ 
 formally to −∞.] 

In giant axons intracellularly perfused with a 400 mM KF solution and immersed 
in artificial sea water, the electric parameters characterizing the axons (about 
0.4 mm in diameter) are known to have the following values: cm is 0.126 µF/cm; 
ri is 29 kQ/cm; r ∗ 

m is 175 Q cm; rm is 16 kQ cm. By introducing these observed values 
into Eqs. (4) and (7), we now examine the dependence of ξ and η on the velocity v 
in the equations. In Fig. 2, the reciprocals of ξ and η, computed by use of Eqs. (4) 
and (7), are plotted against velocity v. Note that, corresponding to every arbitrar
ily chosen value of v, a pair of space-parameters, 1/ξ and 1/η, are determined by 
this computation. It is seen in the figure that the two curves intersect at one point 
where 1/ξ = 1/η = 1.1 mm  and  v = 24.5 m/sec.  

In normal axons, the term ri/rm in Eq. (4) is very small as compared with other 
terms in the equation. When this term is neglected, Eq. (4) may be rewritten as 
follows: 

v = = (8) 
cmri (cm/ξ )(ri/ξ)
ξ /ξ 1  

The first part of this equation indicates that, in Fig. 2, there is inverse proportion
ality between the value of 1/ξ and velocity v. In this part, we recognize also that, 
when the numerical value of ξ is given, the velocity v can be obtained by dividing 
this value by the product cmri. Note that this product represents the time-constant 
of the process of charging the membrane capacity of a unit length of the axon via a 
longitudinal resistance of the axon of the same length. 

To illustrate the importance of the process of charging the membrane capacity 
in nerve conduction, the second part is added to Eq. (8) (simply by dividing both 
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Fig. 2 The space parameters, 1/η and 1/ξ , of the squid giant axon computed, by using Eqs. (4) 
and (7) in the text, as functions of velocity v. The electric parameters of the axon chosen here are: 
R∗, 22 Q /cm2; 2 ρ, 36 Q  cm; C, 1.0 µ F/cm and d, 0.04 cm.

the numerator and denominator in the first part by ξ 2). In this part, the numerator 
1/ξ has a dimension of length, and the denominator represents the capacity of a 
1/ξ long portion of the axon, cm/ξ , multiplied by the resistance of the axon interior 
of the same length, ri/ξ . We thus find that the velocity v is equal to the length 1/ξ 
divided by the time-constant of the process of charging capacity cm/ξ via resistance 
ri/ξ .

Analogously, by solving Eq. (7) for v, we obtain the following equation: 

{ }
(1/η) (1/r ∗ η) − (η/ri)m

v = (9)
(cm/η) 

Now, by replacing ξ in (8) with η and (ri/ξ ) in (8) with the reciprocal of the conduc
tance term inside the braces on the upper right side of (9), we find that (9) has the 
same form as (8). Thus, we see that the velocity v in Eq. (9) is equal to the distance 
(1/η) divided by the time constant of the process of charging the capacity (cm/η) 
by way of conductance {(1/r ∗ η) − (η/m ri) . } It will be shown later that, in the axons 
under study, the first (positive) term in this conductance is approximately twice as 
large as the second (negative) terms (see Eq. (13)). 

Thus far, we have treated the two neighboring regions, active and resting, of 
the axon almost separately, although the boundaries between the two regions are 
moving at a common velocity v. In the next section, we closely examine the electri
cal properties of the transitional zone linking the two regions and investigate the 
effect of this linkage on the distribution of the local current. 

3. Symmetry of the local current 

In squid giant axons that are about 0.4 mm in diameter, intracellularly perfused 
with a 400 mM KF solution and immersed in artificial sea water, the conduction 
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velocity is known to be about 24 m/sec. When this observed value of velocity is 
introduced into the diagram in Fig. 2 by marking it with a straight vertical line, it is 
found that the line falls precisely (i.e. within measurement variability) on the point 
where the two curves in the diagram intersect. In other words, the velocity v which 
gives a pair of 1/ξ and 1/η that are significantly different from each other in the 
diagram are not encountered in real axons. That is, only under the condition that 
the distribution of the local currents on the two sides of the boundary satisfies the 
relation 

ξ = η, (10) 

we can observe displacement of the boundary between the active and resting re
gions at a common, constant velocity v. 

Previously, we have argued that this relation ξ = η derives its origin from the 
continuity of the potential gradient, dV/dX, at the boundary between the active 
and resting regions (Tasaki and Matsumoto, 2002). In the present note, we supple
ment our previous treatment of the local current by taking the following properties 
of the transitional zone into consideration. 

In our recent studies of synthetic polyanionic gel strands (Tasaki, 2002), we have 
seen that the length of the transitional zone between the swollen (Na+-rich) and 
compact (Ca2+-rich) regions is close to the diameter of the strand. From this find
ing, we now infer that the length of the transitional zone in the axon is of the order 
of the thickness of the axolemma–ectoplasm complex which is definitely shorter 
than a few micrometers (see Metuzals et al., 1981). We have seen already that 
the longitudinal resistance ri of the axons under study is 29 kQ/cm, and the mem
brane resistance in the active state r ∗ 

m is 175 Q cm. From these data, we immedi
ately see that the longitudinal resistance of a 10 µm (= 10−3 cm) long portion of 
the axon is only 29 Q, while the membrane resistance of this portion is as high as 
175 kQ. Hence, the potential drop across the longitudinal resistance of this length 
is negligibly small as compared with that across the resistance of the membrane 
of about the same length, provided that these two resistances are connected to 
the emf in series. We thus find it quite reasonable to assume that the membrane 
potential at the advancing end of the active region (at X∗ 

o in Fig. 1) is practically 
equal to that at the receding end (at Xo) of the resting region. Hence, we now 
accept the validity of this approximate relation Vo

∗
 = Vo in these highly excitable 

axons.
When we introduce these two relations, ξ = η and Vo

∗
 = Vo, into Eqs. (3) and 

(6), we find that the local current associated with the rising phase of a propagating 
impulse displays the following remarkably simple characteristics. 

1. The membrane potential at the boundary between the resting and active regions 
corresponds to the level of the half-maximum of the action potential, namely, 

1
Vo = V∗ = (Ea − Er) (11)o 2 

2. The intensity of the longitudinal current, (1/ri)dV/dX, is symmetric with re
spect to the position of the boundary between the active and resting regions. 
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Furthermore, the absolute value of the membrane current, |(1/ri)d2V/dX2|, is  
also symmetric with respect to the boundary. The rising phase of a propagating 
action potential is symmetric with respect to the half-maximum point (cf. Cole 
and Curtis 1939, p. 664). 

3. In the electrical network shown in Fig. 1, we see that the outwardly directly cur
rent through the capacitive pathway in the membrane element located at X∗ 

o is
equal to that of the outward current traversing the capacitive pathway at Xo. 
The total current passing through the membrane element at X∗ 

o is equal in in-
tensity and opposite in direction to that of the outwardly directed capacitive 
current through the element at Xo. Therefore, the resistive component of the 
membrane current (inwardly directed) is twice as intense as the capacitive cur
rent (outwardly directed) passing through the same membrane element. This 
2:1 ratio between the resistive and capacitive component is maintained all along 
the entire active region of the axon. 

4. As stated previously, the conduction velocity formula, Eq. (1) or its alternative 
form, 

1 
v = - (12) 

cm 2r∗ rim

can be derived from the relation ξ = η. In these axons, the space parameter are 
given by 

1 1 2r ∗ 
m = = (13)

ξ η ri 

4. Conclusion 

1. The process of nerve conduction is treated as a consequence of the coexistence 
of two structurally distinct regions, active and resting. 

2. The process of charging the membrane capacity by the local current determines 
the velocity of nerve conduction. 

3. The local current spreads symmetrically with respect to the boundary between 
the active and resting regions. 

4. There are simple quantitative rules governing the intensity ratio between the 
capacitive and resistive components of the local current. 
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