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Introduction  In many diffusion tensor imaging (DTI) analysis methods, including registration, realignment and re-slicing, averaging or interpolating tensors 
is required. Defining how distance is measured between tensors, through a metric, determines the interpolation results. It was demonstrated that when using a 
conventional Euclidean metric, the resulted tensor might have a larger volume (determinant) than the original tensors [1]. This effect was termed the “swelling 
effect” [2] and a family of geometric metrics that include the Affine-invariant metric [3] and the Log-Euclidean metric [1] were suggested in order to 
minimize it. However, recently it was shown that using the geometric metrics introduces bias in the estimation of the diffusion quantities, which renders these 
metrics inappropriate for diffusion tensor analysis [4]. In this work we seek to find the sources of the swelling effect by performing tensor averaging using a 
Euclidean metric and a Log-Euclidean metric, and observing the bias in estimating FA, ADC and volume. We show that (i) using the Log-Euclidean metric 
reduces swelling, but introduces other types of biases in the estimation of ADC and FA; (ii) depending on the type of noise, a swollen tensor may be a 
preferred estimate. We argue that unwanted swelling effect is limited to certain scenarios, yet neither metrics help in avoiding it then. 

Methods  Data generation follows the synthetic experiments reported in [4]: noisy replications of tensor images were generated by selecting a reference 
tensor image (a single slice taken from a DTI acquisition of a healthy volunteer) and introducing Johnson noise (Rician distributed) using Monte-Carlo 
simulations to reproduce noisy replicates. Tensor fields were fitted to each replicate using the fitting procedure in [5] that assures positive definite tensors. 
Then, for each voxel a mean tensor was calculated, either using the Euclidean metric (arithmetic mean) or the Log-Euclidean metric (geometric mean). Maps 
of FA, ADC and determinant were generated for both types of mean tensor. In addition, “direct mean” FA, ADC and determinant maps were calculated by 
simply averaging the individual maps calculated for each noisy replicate. Voxel-wise bias, bias = (E(x) – x0)/x0, was calculated by comparing each average 
map (E(x)) with the FA, ADC and determinant maps of the reference image (x0). The values shown in the plots are the mean bias (dots) and standard deviation 
(solid lines) across all voxels in the quantity (ADC, FA or determinant) range. 

Results and Discussion 
Figure (1) shows the bias in estimating the determinant, or volume of 
the tensors. Figure (2) shows the bias in estimating ADC and figures 
(3-4) show the bias in estimating FA. Positive bias suggests 
overestimation while negative suggests underestimation. The 
Euclidean metric consistently over estimates the determinant, over 
estimates lower ADC values and lower FA values, and under 
estimates higher ADC values and higher FA values. This indeed 
suggests a tendency to swell (higher determinant, lower FA). The 
Log-Euclidean metric consistently under estimates the determinant, 
which suggest shrinking, yet at the cost of consistently under 
estimating ADC, and over estimating most FA values. The size of the 
bias for both metrics is comparable, yet in FA estimations is 
consistently lower for the Euclidean metric relative to the Log-
Euclidean metric. Estimating the direct mean ADC is equivalent to 
estimating the ADC of the Euclidean mean tensor (since these are 
linear operators), yet the effect of using the direct mean estimate is 
evident in the FA estimation bias shown in figure (4). The direct 
estimation introduces high bias in the form of over-estimation when 
estimating low FA voxels. This effect is explained since noisy 
replicates of initially low FA tensors are likely to have a higher FA. 
Direct estimating the mean FA of all replicates is then an average of 
overestimated values and is overestimated by it self. The swelling 
effect of the Euclidean metric is beneficial here, since the mean tensor 

had lower determinant and FA than the noisy tensor replicates and, in fact, better resembles the original tensor, yielding 
much lower bias. The intensity of figure (5) is proportional to the difference between the direct mean FA estimation 
bias and the Euclidean mean tensor FA estimation bias, showing that indeed the direct approach over estimates FA, 
mainly in isotropic voxels (gray matter and CSF). Unwanted swelling effect is therefore limited mainly to white-matter 
voxels and may only be evident when the source of variability affects mainly the orientation (unlike Johnson noise). 
This may be the case in miss-registration across repeated scans, or across subjects, that result with the same fiber tract 
oriented differently. For this special case we argue that a global metric (either the Euclidean or the Log-Eucldean) is 
not helpful, and local, tissue specific metrics that operate on subset of tensors are required. 

(5)	 Summary. The findings of this experiment are that the Euclidean and Log-Euclidean metrics show similar behavior in 
the estimation of ADC and FA for the range of tensors that are expected to occur in DTI of the brain. The Euclidean 
metric is consistently less biased in the estimation of FA. These findings together with previously published theoretical 
and statistical analysis of metric selection effects [4,6] provide empirical reasons for preferring the Euclidean metric 
over the tested geometric metrics. 
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