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Synopsis

We quantified the alignment between the DTI reference frame (DRF) and the cortical reference frame (CRF) throughout the entire cerebral cortex in a
macaque brain, and found relatively good correspondence, especially in regions with high curvature such as the gyral walls and the cortical sulci.
Based on this correspondence, we analyze cortical diffusion signals in the CRF and construct a simple model of cortical diffusion with distinct radial
(columnar) and tangential (sheet-like) diffusion processes in cortical layers. The variation of model parameters with cortical depth reflects
architectonic features described in a histologically defined digital macaque brain atlas.

INTRODUCTION

Diffusion MRI (dMRI) analysis in anisotropic tissues such as white matter (WM) can be simplified considerably by using the diffusion tensor imaging (DTI)'
reference frame (DRF). The DREF is coincident with the dominant orientation of the underlying tissue microanatomy and provides a basis for making useful
simplifying assumptions in the construction of many WM tissue models, such as CHARMED? or AxCaliber®. In tissues with low anisotropy, such as gray matter
(GM), due to the similarity of the principal diffusivities, the DRF is poorly defined and prone to sorting bias* preventing the construction of a continuous and
anatomically-consistent DRF tensor field approximation. Nevertheless, recent studies®” suggest that at high spatial resolution diffusion anisotropy in the cortex
varies with the folding geometry, i.e., the cortical reference frame (CRF), showing preferentially radial and tangential components®'? which evoke cortical
columns and layers'"'2, respectively, that can be observed with post-mortem histological staining.

We conduct a whole-cortex analysis of the alignment between the DRF and the CRF in the macaque brain and explore the possibility of employing the latter to
construct eloquent, simplified models of water diffusion in the cortex. We analyze tissue model parameters in cortical regions-of-interest (ROIs) obtained from a
histologically-defined macaque brain atlas'®'4. dMRI models that reveal columnar (radial) and sheet-like (tangential) diffusion components in the cortex could
automate in vivo cortical architectonic mapping, improve the clinical characterization of neuroinflammatory and neurodegenerative diseases, and advance our
ability to study the developmental timelines of cortical cyto- and myelo-architecture 6 inter alia.

METHODS

We acquired 101 diffusion-weighted images (DWIs) of a perfusion-fixed macaque brain'” at 7T using a 250um isotropic resolution, FOV=78x64x72cm,
TE/TR=33.3/250ms. We used multiple b-values (100,600,1500,2800,4800,7200,10000s/mm?) with gradient orientations (3,4,8,12,18,24,32 respectively)
uniformly sampling the unit sphere for each b-shell and across shells, and gradient pulse parameters 5=8ms and A=16.1ms. We also conducted a magnetization
transfer (MT) prepared gradient-echo experiment, segmented'® the WM and GM, reconstructed the GM/WM and pial cortical surfaces'® and computed
intermediate surfaces corresponding to cortical layers using the equivolumetric principle?®2". We registered?? the histologically-defined D99 digital rhesus
macaque brain atlas'®'* to the EPI distortion-corrected DWIs? allowing for correlation analysis between dMRI parameters and histological stains in
corresponding cortical areas.

We quantified the relative alignment between the CRF and the DRF throughout the cortex by measuring the radial and tangential deviations, angles 6 and ¢,
respectively (Fig.1), and found relatively small deviations which justified dMRI analysis in the CRF. Consequently, we analyzed the DWIs (interpolated at each
vertex of each layer surface) in the CRF using a simple two-component “stick-and-disc” tissue model that accounts for separate (non-exchanging) radial and
tangential diffusion processes in each cortical layer (Fig.2):
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where E, (g) is the diffusion signal attenuation as a function of the applied gradient g; f represents the signal fraction of the radial diffusion component; while
the scalars D, and D; define the cylindrically symmetric degenerate rank-1 (radial) and rank-2 (tangential) diffusion tensors aligned with the cortical surface
normal, 72, and the tangent plane defined by the minimum and maximum Gaussian curvature orientations, El\ and E; respectively (Fig.1). We computed cortical
depth profiles of f, D, and D, and quantified their statistics in regions-of-interest (ROls) obtained from the histologically-defined D99 macaque brain atlas.

RESULTS

Matching the axes of the DRF and CRF (Fig.1) in regions with very low anisotropy, allows reordering of the diffusion tensor axes (i.e., sorting of the principal
diffusivities) to produce a more continuously-varying tensor field approximation in the cortex. Moreover, the relatively small deviations between the DRF and
CRF (Fig.2) suggest that the CRF may provide a well-defined anatomically-consistent and continuous reference fame for use in dMRI analysis, especially in
regions with high curvature.

The largest misalignment is observed in regions with negative curvature (i.e., gyral crowns) and low diffusion anisotropy (e.g., the superior temporal gyrus)
where the DRF is poorly-defined (Fig.2). Significantly better alignment can be observed in cortical areas with high curvature along the gyral walls and in the
sulci.

The mid-cortical layer shows the largest values of f (Fig.4), consistent with the increased presence of radial projections in histological observations of cortical

myeloarchitecture (Fig.3). The largest difference between D, and Dy, was also found in the mid-cortical layers, suggesting the presence of strong diffusion
processes along cortical columns, in agreement with previous findings®1° (Fig.4).
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DISCUSSION AND CONCLUSIONS

Our results point to a remarkable correspondence between structural and functional reference frames across multiple length scales. The DRF describes a
physiological process (water diffusion) at the microscopic scale (~5um) while the CRF characterizes brain anatomy (cortical folding) at the macroscopic and
mesoscopic scales (~500um). The correspondence between these two reference frames (Fig.2) suggests that biological structures at the meso- and
macroscopic scales may arise from processes at the microscopic scale, which would determine local transport properties, particularly the diffusion of various
molecules (e.g., growth factors) during development'®.

Concurrently, our results also imply that, from the cortical surface geometry, one could infer information about the microscopic tissue organization, which may
simplify dMRI analysis within cortical areas, and among cortical layers, primarily by reducing the number of degrees of freedom in analyzing signals and
constructing tissue models.
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Figure 1: Aligning the DTI reference frame, DRF, (red) to the cortical reference frame, CRF, (green) (A). The CRF is defined by aligning the surface normal (dark
green) along the z-direction, and the minimum (light green) and maximum (green) Gaussian curvature orientations along the x- and y-axes (B). The orientations
of the smallest (light red), intermediate (red), and largest (dark red) tensor diffusivities are matched to the CRF axes by computing radial (8) and tangential (¢)
deviations (C,D).

Figure 2: Angles for radial (8) and tangential alignment (¢) defined in Fig. 1 corresponding to the mid-cortical surface in the left hemisphere of the rhesus
macaque brain.

Diffusion MRI tissue model for
cortical layer microstructure

Figure 3: Tissue model for cyto and myelo-architecture in the macaque cerebral cortex. Histology section showing the lamination in the motor cortex (left).
Schematic of the cortical laminar architecture (middle). The diffusion signal in cortical layers is decomposed into radial (red) and tangential (blue) components
defined with respect to the CRF (right) and described using a “stick-and-disk” model with parameters: f-signal fraction, Dr and Dt radial and tangential scalar
diffusivities.

Figure 4: Cortical depth and areal dependence of cortical tissue model parameters. The relative fraction of radial components (f) is highest in the mid-cortical
layer and decreases at the GM/WM and pial surfaces. The radial diffusivity Dy is larger than tangential diffusivity D; in the lower and mid-cortical layers. Close to
the pial surface both D, and Dy are large, potentially due to residual free water from tissue re-hydration prior to imaging.
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