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On the Cable Theory of Nerve Conduction
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Conduction of an impulse in the nonmyelinated nerve fiber is treated quantitatively
by considering it as a direct consequence of the coexistence of two structurally dis-
tinct regions, resting and active, in the fiber. The profile of the electrical potential
change induced in the vicinity of the boundary between the two regions is analyzed
by using the cable equations. Simple mathematical formulae relating the conduc-
tion velocity to the electrical parameters of the fiber are derived from the symmetry
of the potential profile at the boundary. The factors that determine the conduction
velocity in the myelinated nerve fiber are reexamined.
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1. INTRODUCTION

The process of nerve conduction has been extensively studied in the past, both
experimentally and theoretically. Mathematical theories of nerve conduction based
on the modern cable concept were developed a long time ago byOffner et al.
(1940), somewhat later byRushton(1951), and eventually byHodgkin and Hux-
ley (1952). Nevertheless, in view of the fact that the nature of the rapid structural
changes in the nerve fiber associated with nerve conduction has been elucidated
only in recent years [seeTasaki(1999a,b) andTasaki(2002)], it is deemed worth-
while to reexamine the process of nerve conduction.

The classic papers published byCole and Curtis(1939), by Cole and Hodgkin
(1939) and byHodgkin and Rushton(1946), describing the basic cable properties
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of the invertebrate giant axon, provide the starting point of the present mathemat-
ical analysis. The process of nerve conduction is analyzed by incorporating the
electrical manifestations of the discrete structural change in the axon membrane
into the cable-like electrical network representing the properties of the axon. The
interaction between the active and resting regions of the axon, by virtue of the
‘local current’ (Hermann, 1879), assumes the crucial role in the nerve conduction
process.

The present analysis of the conduction velocity is an extension of the studies pub-
lished previously byMatsumoto and Tasaki(1977) and byTasaki(2002). It should
be remarked that, in these studies, the behavior of the nerve fiber is described in
terms of coarse-grained variables without reference to the microscopic details of
the membrane structure. No precise knowledge of the electrochemical processes
serving to maintain the membrane emf and resistivity is required in the present
analysis.

2. POTENTIAL PROFILE IN THE V ICINITY OF THE BOUNDARY BETWEEN

THE ACTIVE AND RESTING REGIONS

Let us consider the process of nerve conduction taking place in a nonmyelinated
nerve fiber placed in a large volume of saline solution. To dispel the chemical
and thermodynamic uncertainties encountered in studies of intact (metabolizing)
nerve fibers, a squid giant axon internally perfused with a 400 meq l−1 K+-salt
solution and immersed in artificial sea-water is considered initially. An axon car-
rying a nerve impulse is visualized as a thin, cylindrical layer of macromolecu-
lar material, enclosed in a superficial layer, known as ‘axolemma-ectoplasm com-
plex’ (Metuzalset al., 1981) and designated in this paper simply as ‘membrane’,
which consists of two structurally distinct regions, active and resting. The bound-
ary between the two regions is moving along the axon at a constant velocity.

The electrical properties of the axon are represented by the network illustrated in
Fig. 1. In the resting state, the potential inside the axon (referred to as the potential
outside) at positionx along the axon at timet , V(x, t), satisfies

cm
∂V

∂t
+

1

rm
(V − Er ) =

1

r i

∂2V

∂x2
, (1)

wherecm is the membrane capacitance,rm the membrane resistance,Er the emf of
the membrane andr i is the longitudinal resistance of the axon in the resting state
(see Fig.1, right). Equation (1) states that the membrane current, consisting of the
capacitive and ohmic components, is directly related to the second derivative of the
potential,∂2V/∂x2, by way of conductivity of the axon interior, 1/r i .

Analogously, the equation describing the behavior of the active region of the
axon is

c∗

m

∂V

∂t
−

1

r ∗
m

(Ea − V) =
1

r i

∂2V

∂x2
, (2)
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Figure 1. Electrical network used for explaining the process of nerve conduction in a
squid giant axon. The diagram illustrates the electrical properties of the axon membrane in
the vicinity of the boundary between the resting and active regions. The symbolrm/1X
represents the resistance of the element of the membrane of1X in length in the resting
state. Other symbols are explained in the text. The symbols marked with asterisk indicate
the quantities representing the properties of the axon membrane in the active state.

wherec∗

m, r ∗

m and Ea are the membrane capacitance, resistance and emf in the
active region of the axon, respectively (see Fig.1, left).

Suppose that the nerve impulse is propagating in the positive direction ofx at a
constant velocityν. To an observer moving along with the propagating impulse, the
position of the boundary between the resting and active regions remains stationary
and the potential profile seen in the vicinity of the boundary is time-independent.
To analyze the potential profile in the vicinity of the boundary, therefore, it is con-
venient to adopt a new space variableX defined byX ≡ (x − νt). When this
variable is adopted, the partial differential equation (1) is reduced to the following
ordinary differential equation

1

r i

d2V

dX2
+ cmν

dV

dX
−

1

rm
(V − Er ) = 0. (3)

The solution of this equation is found to be

V = Er + (Vo − Er )e
−(X−Xo)ξ , (4)

whereVo is the potential at the receding end of the resting region,X = Xo, andξ

is the solution of the quadratic equation

1

r i
ξ2

− cmνξ −
1

rm
= 0. (5)

The physiologically meaningful solution of equation (5) is

ξ =
cmν +

√
(cmν)2 + 4/(r i rm)

2/r i
. (6)
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The corresponding equations for the active region are

1

r i

d2V

dX2
+ c∗

mν
dV

dX
+

1

r ∗
m

(Ea − V) = 0 (7)

and

V = Ea − (Ea − V∗

o )e−(X∗
o−X)η, (8)

whereV∗

o is the potential at the advancing end of the active region (whereX = X∗

o),
andη is the solution of the quadratic equation

1

r i
η2

+ c∗

mνη −
1

r ∗
m

= 0. (9)

The meaningful solution in this case is:

η =
−c∗

mν +
√

(c∗
mν)2 + 4/(r i r ∗

m)

2/r i
. (10)

Note that the active region extends formally from−∞ to X∗

o.
It is seen in Fig.1 that, in the vicinity of the boundary, there is an inwardly

directed membrane current in the active region and an outwardly directed current
in the resting region. The potential changes associated with the spread of these
‘local currents’ decays exponentially with increasing distance from the boundary.
It is to be noted that 1/η and 1/ξ , which are termed ‘space parameters’, measure
the length scale of the potential spread.

In Fig. 1, we note that the advancing end of the active region is connected to
the receding end of the resting state with a longitudinal electrical resistance(X∗

o −

Xo)r I . This longitudinal resistance is traversed by the current that flows between
the active and resting ends of the network. The potential drop across this resistance
divided by (X∗

o − Xo) gives the potential gradients, dV/dX,at the ends of both
active and resting regions. Thus, from equations (4) and (8), we have

ξ(Vo − Er ) = η(Ea − V∗

o ). (11)

We note, in the network illustrated in Fig.1, further that the algebraic sum of the
currents passing through the closed surface indicated by the stippled rectangle at
the boundary in the figure is equal to zero. (Note that the space enclosed by the
surface corresponds to the interior of the axon occupied by the internal perfusion
solution.) The difference1i between the two longitudinal currents traversing the
surface is given by

1i = i ∗

o − io =
V(X∗

o − 1X) − V(X∗

o)

r i 1X
−

V(Xo) − V(Xo + 1X)

r i 1X
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=
1

2r i
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]
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=
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−

1
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1

2r i
ξ2(Vo − Er )

]
1X − O((1X)2).

(12)

The currents passing through the elements of the membrane,1X in length, located
in the immediate vicinity of the boundary (see Fig.1) are given by

i ∗

m1X =

(
−c∗

mνη +
1

r ∗
m

)
1X(Ea − V∗

o ) (13)

and

im1X =

(
cmνξ +

1

rm

)
1X(Vo − Er ). (14)

Thus, the requirement that1i + (i ∗

m − im)1X = 0 leads to the following relation:[
−

1

2r i
η2

− c∗

mνη +
1

r ∗
m

]
(Ea − V∗

0 ) =

[
−

1

2r i
ξ2

+ cmνξ +
1

rm

]
(Vo − Er ). (15)

By use of equations (5) and (9), the sum of the terms inside the square bracket on
the left and that on the right side of equation (15) are found to be equal toη2/(2r i )

andξ2/(2r i ), respectively. Finally, from equation (11), we arrive at a very simple
relation

η = ξ. (16)

This is the condition that is fulfilled when the axon is carrying an impulse at a
constant velocityν. The potential profile seen under these conditions is illustrated
in Fig. 2.

Every term on the right side of equations (6) and (10) is amenable to direct
experimental determination. We have known for some time that the values ofη

and ξ calculated by using the observed values ofr ∗

m, cm, ν, r i etc. are actually
very close to each other (Matsumoto and Tasaki, 1977). In the axon under con-
sideration (diameterd ≈ 0.4 mm and with 0.4 M K+-salt inside), the unit-area
membrane resistance at the peak of excitationR∗

m(= r ∗

mπd) was approximately
22�· cm2. The ratior ∗

m/rm was roughly 0.01. The membrane capacitance per unit
areaC(= cm/πd ≈ c∗

m/πd) is approximately 1µF cm−2. The specific resistance
ρ(= r i πd2/4) of the 0.4 M K+-salt solution was 36� cm. The conduction veloc-
ity ν was 24 m s−1. When these observed values are introduced into equations (6)
and (10), it is found that bothξ andη are approximately 1/(1.1 mm).

The validity of equation (16) has been demonstrated further by a series of mea-
surements in which the specific resistance of the internal K+-salt solution was sys-
tematically varied by successive dilution of the internal salt solution [see Table III
in Matsumoto and Tasaki(1977)].
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Figure 2. Diagrammatic representation of the potential profile in the vicinity of the bound-
ary between the resting and active regions of a nonmyelinated nerve fiber. The ordinate
portrays the electrical potential inside the axon,V(X). The abscissa represents the distance
along the axon from the boundary,X. In squid giant axons, (Ea − Er ) is approximately
115 mV and the length( 1

ξ +
1
η ) is roughly 2 mm. See the text.

3. DERIVATION OF THE CONDUCTION VELOCITY FORMULAE

We now derive, from the relationη = ξ , explicit formulae relating the conduction
velocity to the electrical parameters of the axon. It follows from equations (6), (10)
and (16) that

− c∗

mν +

√
(c∗

mν)2 + 4/(r i r ∗
m) = cmν +

√
(cmν)2 + 4/(r i rm). (17)

After some algebraic operation requiring repeated squaring, this equation gives

ν =

√
(1 − κ)2

(cm + c∗
m)(cm + κc∗

m)r i r ∗
m

, (18)

whereκ = r ∗

m/rm, namely, the ratio of the membrane resistance at the peak of
excitation to that at rest. Sinceκ � 1 in normal squid giant axons, equation (18)
reduces to

ν ∼=
1√

(cm + c∗
m)cmr i r ∗

m

. (19)

When the change in the membrane capacitance during excitation is ignored,
namely, whenc∗

m
∼= cm, equation (19) becomes:

ν ∼=
1

cm

√
2r i r ∗

m

, (20a)

or

ν ∼=
1

√
8

1

C

√
d

R∗ρ
. (20b)

This is the formula reported previously (Matsumoto and Tasaki, 1977), relating the
conduction velocityν to C (membrane capacitance per unit area),d (diameter),
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R∗ (unit area membrane resistance to radial current at peak of excitation) andρ

(longitudinal specific resistance of the axon interior).

It is to be noted that the conduction velocity formulae described above do not
explicitly contain(Ea − Er ), i.e., the term representing the action potential ampli-
tude. The reason for the absence of this term is that we have chosen, at the outset of
the present analysis, only those axons capable of carrying an impulse at a constant
velocity. Obviously, there is an implicit assumption as to the acceptable range of
(Ea − Er ) in the present analysis (see below).

The above-cited equations indicate a strong dependence of the conduction veloc-
ity on the membrane capacity. Since the capacity is considered to be determined by
the polarizability of the strands of polyelectrolyte molecules in the ‘membrane’ and
since the polarizability of anionic polyelectrolytes is known to be strongly affected
by the Ca2+–Na+ concentration ratio in the medium [seeMinakata(1972)], a sig-
nificant increase in the membrane capacity is expected at the onset of a nerve
impulse. However, the increase reported byTakashima(1979) was only about 20%.
It is noted that the polyelectrolyte strands in the superficial layer of a freshly iso-
lated squid axon (excitable) are oriented predominantly in the longitudinal direc-
tion, i.e., in the direction parallel to the axon surface (Tasaki, 1999b). It appears
that the structural change taking place at the onset of an impulse does not bring
about a large change in the membrane polarizabity in the direction normal to the
axon surface.

The dependence of the conduction velocity on the membrane resistance is quite
significant. Obviously, no nerve conduction is expected whenκ in equation (18)
approaches unity, namely, when there is no significant change in the membrane
resistance at the peak of excitation. Whenκ � 1, the velocity is expected to be
inversely proportional to the square root of the membrane resistance at the peak of
excitation,

√
R∗. The dependence of the velocity on the fiber diameterd is well

known (Pumphrey and Young, 1938). The formulae described above are consistent
with this known fact.

We now examine the validity of the simplified equation, equation (20b). In
excised giant axons of the squid,C is about 1µF cm−2, R* is 25 ∼ 40� · cm2, and
ρ is 30∼ 70� · cm (Cole and Hodgkin, 1939; Hodgkin and Huxley, 1952). When
these values are introduced into equation (20b), the conduction velocityν calcu-
lated for giant axons of 0.05 cm in diameter is found to be 15∼ 28 m s−1, with an
average of 22 m s−1. No adjustable parameters were used in this calculation. The
agreement between the calculated and observed values is very good.

Squid giant axons which are internally perfused with a dilute Na+-salt solution
and immersed in a Ca2+-salt solution are known to sustain their ability to carry
propagated impulses (Inoue et al., 1974). It has been shown (Matsumoto and
Tasaki, 1977) that the conduction velocities observed under these and other exper-
imental conditions are in general agreement with the values calculated by use of
equations (20).
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4. PHYSIOLOGICAL SIGNIFICANCE OF THE SPACE PARAMETERS

1/η1/η1/η AND 1/ξ1/ξ1/ξ

Figure2 shows the spatial distribution of the potential change generated in the
vicinity of the boundary between the active and resting regions of an axon carrying
an impulse. The diagram in this figure illustrates the potentialV(X) at positionX
along the axon measured from the boundary which is moving at a constant veloc-
ity ν. Since the length of the transitional zone intervening between the active and
resting regions, (X∗

o − Xo), is considered to be far smaller than the space parame-
ters, the boundary between the two regions is indicated by a single vertical line in
the middle of the diagram.

It is seen in the figure that the portion of the potential profile in the resting region
[described by equation (4)] extends from the midpoint between the upper and lower
limits of the potential,V =

1
2(Ea − Er ), toward the positive end of the axon. The

portion of the profile in the active region [described by equation (8)] extends from
the midpoint toward the negative end of the axon. From the equality of the space
parameter 1/ξ of the resting region to that of the active region 1/η [equations (11)
and (16)], it follows that the total potential profile is made up of two identical
exponentials.

The numerical value of the parameter can be obtained, whenν, r ∗

m, etc. are
known, directly from equations (6) and (10), or simply by the following equation

1

ξ
=

1

η
=

√
2r ∗

m/r i , (21)

which can be obtained by introducingν from equation (20a) into (6) or (10). As
has been stated already, the space parameter is roughly 1 mm in squid axons of
about 0.4 mm in diameter. [Note that this parameter, described by equation (21),
is formally similar to the ‘space constant’λ of an axon in the resting state,λ =
√

(rm/r i ), which is around 7 mm in these axons.]
Since the velocityν of the impulse propagating along the axon is chosen to be a

constant, the spatial profile of the potential change can be converted into its tempo-
ral profile simply by dividing the coordinateX by −ν. Therefore, the diagram in
Fig. 2 indicates that the rising phase of a propagated action potential is also made
up of two identical exponentials, symmetric with respect to the midpoint. This
actually is a general feature of the propagated action potentials recorded from the
interior of the freshly excised giant axons of the squid.

Interestingly, in their classical analysis of the time-course of the propagated
action potential, Cole and Curtis pointed out that the rising phase of the recorded
action potential is nearly symmetric with respect to the half-maximum point [see
p. 664 inCole and Curtis(1939)]. Furthermore, they noted that the onset of the
abrupt fall in the membrane resistance (associated with ‘rm → r ∗

m’ transition in
the present analysis) coincides roughly with the time when the potential rises to
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the half-maximum level (see p. 667). This characteristic of the propagated action
potential is also properly represented in the diagram of Fig.2.

In freshly excised axons, the threshold voltage level at which an action potential
is evoked by a short current pulse is normally less than 25 mV (≈RT/F in electro-
chemistry) above the resting potential level,Er . Since(Ea − Er ) is approximately
115 mV, it is evident that the process underlying the propagation of a normal nerve
impulse goes on with a considerable margin of safety. The active membrane ele-
ment located at the advancing end of the active region delivers a strong, exponen-
tially rising ‘restimulating current’ to the neighboring elements in the resting state.
The rapidity of the ‘rm → r ∗

m’ transition in the nerve fiber is believed to result
from the high rate of rearrangement of water molecules around Ca-ions and flexi-
ble strands of the anionic macromolecules [cf.Levine and Williams(1982, p. 14)].

[No nerve conduction (at a constant velocity) is expected to take place when the
action potential amplitude is reduced (e.g., by application of an anesthetic to the
axon) to a level around twice the threshold potential.]

Now, it should be remarked that the electrical network representing the axon
membrane in its resting state is assumed to be a simplelinear network. In fact,
it is known that, when the strength of the stimulating current is well below the
threshold, the voltage developed across the membrane (in the resting state) varies
linearly with the applied current (Hodgkin and Rushton, 1946; Tasaki, 1982). A
deviation from the linearity is observed when the potential evoked approaches the
threshold level; and this deviation is attributed to the intervention of a ‘subthreshold
response’ (Hodgkin and Rushton, 1946). However, when the stimulating current
is strong and the potential evoked quickly rises to a high level, as in the case of
restimulation by the local current, there is no time for intervention of a subthreshold
response and, consequently, the deviation from the linearity is negligibly small [see
pp .64 and 108 inTasaki(1982)]. [Note that, in fresh squid axons, the time required
for re-stimulation(≈1/ξυ) is about 50µs, which is far shorter than the duration
of the action potential (∼1 ms).]—It is known also that there is an approximately
linear relationship between the voltage and current measured in the axon membrane
in its active state [see e.g., Fig. 3,Matsumoto and Tasaki(1977)].

In the theory of propagation of the rising phase and peak of the action poten-
tial formulated by Hodgkin and Huxley, the conduction velocity is given byν =

[Kd/(4ρC)]1/2, where the quantityK depends on the conductancegNa(V, t) in
their theory in an intricate fashion [Hodgkin and Huxley(1952, p. 524, 528)].
When the quantityK is replaced simply with 1/(2R∗C), their velocity equation is
converted to equation (20b).

5. A BRIEF ACCOUNT OF NERVE CONDUCTION IN M YELINATED FIBERS

The electrical network representing the properties of a myelinated nerve fiber is
complicated by the existence of the myelin sheath which is interrupted by nodes



1078 I. Tasaki and G. Matsumoto

0.08 msec 0.2 msec

Figure 3. Top: tracings of the action currents recorded from the middle of an internode of a
bull-frog motor nerve fiber. The left tracing is a copy of the longitudinal current; the right
tracing, the current traversing the myelin sheath. The bars below the tracings represent
the internodal conduction time. Middle: schematic diagram of a myelinated nerve fiber.
Bottom: time-course of the voltage applied to the ‘nodal membrane at node N1’ (left) and
those of the voltage recorded across the ‘nodal membrane at N2 and N3’ (middle and right
tracings). These records were taken from an electrical network analog (described in text).
The bars below the middle and right tracings represent 0.08 and 0.2 ms, respectively.

of Ranvier at more-or-less regular intervals. Motor nerve fibers of the bull-frog are
12–15µm in outside diameter and the internodal distance is 2–2.5 mm (Fig.3).
At the node of a freshly excised fiber, the axolemma surface (devoid of myelin
covering) is roughly 0.5 ∼ 1 µm wide. Since the conduction velocity in these
fibers is 20∼ 25 m s−1, the internodal conduction time is roughly 0.1 ms [cf.
Tasaki(1982)].

It is relatively easy to record the longitudinal current associated with a propagated
impulse from the middle of the internode of a single motor nerve fiber (see tracing
marked ‘i l ’ in the figure). It is also possible to record the membrane current in the
internodal region of a fiber (tracing ‘im’). By analyzing the time-courses of these
current records, the electrical parameters of the frog motor nerve fiber have been
determined (Tasaki, 1955).

Capacity of myelin sheath (cm): 1.6 × 10−11 F cm−1

Resistance of myelin sheath (rm): 2.9 × 107 � · cm
Capacity of nodal membrane (C): 1.5 × 10−12 F
Resistance of nodal membrane (R): 41× 106 �

Resistance of axis cylinder (r i ): 1.45× 108 � cm−1.

These results indicate that the myelin sheath behaves like a leaky capacitor. It
is to be noted that the capacity–resistance product,cmrm, of the myelin sheath is
roughly 0.5 ms. In stimulation of a nerve fiber with long current pulses (>1 ms
duration), therefore, the myelin sheath can be treated as a good insulator, because
the stimulating current goes in and out of the fiber mainly through the nodal mem-
brane. However, when the stimulus duration becomes shorter than about 0.5 ms,
the stimulating current is short-circuited by the capacitive flow of electricity
through the myelin sheath. Consequently, the threshold strength of a stimulating
pulse markedly rises when the duration is reduced beyond about 0.5 ms. In clas-
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sical physiology, this dependence of threshold strength on the stimulus duration is
known as the ‘strength-duration relation’ [see p. 95 inTasaki(1982)].

The capacitive flow of electricity through the myelin sheath also plays a cru-
cial role in the following analysis of the conduction velocity in the fiber. In the
myelinated region of the fiber, the spread of the electrical potential inside the fiber,
V(x, t), may be described simply by

∂V

∂t
=

1

cmr i

∂2V

∂x2
, (22)

the coefficient 1/(cmr i ) being about 430 cm2 s−1 in frog motor nerve fibers. [Note
thatV in this and the following equations corresponds to (V − Er ) in equation (1).]
In a myelinated nerve fiber carrying an impulse, when one of the nodes, say N1,
becomes active, the resulting rise of the potential inside the fiber spreads along the
internode from N1 toward its neighboring node, N2 (see Fig.3). At the time when
the potential across the membrane at N2 rises above the threshold level, node N2

also becomes active. The internodal conduction time is determined primarily by
the time required for the spread of the potential from one node of the fiber to the
next.

When node N2 is kept in its resting state, the distribution of the potentialV(x, t)
and the longitudinal currenti l (x, t) in the vicinity of active node N1can be des-
cribed by the following solution of equation (22):

V = Ea

{
1 − erf

x

2
√

t/(cmr i )

}
, (23)

and

i l =
1

r i

∂V

∂x
=

1

r i

Ea
√

π t/(cmr i )
e−x2cmr i /(4t) (24)

whereEa is the value ofV across the membrane of N1 located atx = 0 and ‘erf’
represents the error function solution [see p. 60 inCarslaw and Jaeger(1959)]. It
is seen from these equations that the timet required for any point to reach a given
potential (or current intensity) is proportional to the square of the distancex from
the active node, N1. From equation (23), it is estimated that, at the distance of
2 mm from N1, the time required for the potential to rise to 1/2 of the final level
is roughly 0.1 ms. (However, note that the singularity of the fiber at the nodes is
ignored in this estimation.)

It is desirable to estimate the time-course of the potential reached in the inte-
rior of N2 prior to the onset of the excitation process at this node. Anticipating
some difficulty in the purely mathematical approach to this estimation, the follow-
ing simple observations were made on an electrical network analog of the nerve
fiber. This electrical network was fabricated using commercially available, small
resistors and capacitors. It was made up of four ‘nodes’ separated by three ‘intern-
odes’. In the network, the capacities were chosen to be 1000-times as large as those
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of the real nerve fiber (listed above), and the resistances were reduced by a factor
of 1/1000, keeping the capacity–resistance products unaltered. Each of the three
‘internodes’ was divided into 10 equivalent sections, replacing the continuously
distributed capacity around the axis-cylinder with a finite number of capacitors.
A rectangular voltage pulse was delivered directly to the ‘node’ N1 at one end of
the network, and the time-courses of the potentials developed at the neighboring
‘nodes’ N2 and N3 were recorded with an oscilloscope (see Fig.3, bottom).

It is seen in the figure that the potentialV2(t) reached at the next node (N2) was
slightly smaller than one-half of the potential delivered to N1. The time required to
rise to 50% of the final level was about 0.08 ms. The potentialV3(t) reached at N3
was about 20% of the potential at N1, and the delay at the 50% level was about
0.2 ms. A ‘silent period’ of about 0.05 ms was observed between the onset of the
potential at N1 and that at N3.

Based on the results of these observations, it seems safe to conclude that a consid-
erable portion of the internodal conduction time is attributable to the delay caused
by the capacity of the myelin sheath. [See p. 99 inTasaki(1982), for physiological
data in support of this conclusion.] The action potential developed at one node of a
fiber carrying an impulse is preceded, as in the case of nonmyelinated nerve fibers,
by a small potential rise derived from the activity of the preceding node.

Finally, the process of nerve conduction in small myelinated nerve fibers is
briefly discussed. From equations (23) and (24), it is seen that the time required for
the potential to spread from one node to the next is governed primarily by the expo-
nent−x2cmr i /4t in the equations. The longitudinal resistance (of the axis-cylinder)
per unit length of the fiber,r i , varies inversely with the square of the internal diam-
eterd′ of the myelin sheath. The capacitance of the myelin sheath,cm, is deter-
mined by the ratiod/d′, whered is the external diameter of the myelin sheath; and
it is known that this ratio does not vary appreciably with the fiber diameter [see
Rushton(1951, p. 105)]. The internodal distancel varies directly with the diam-
eter d (Tasakiet al., 1943). Therefore, the value of(l 2cmr i ) is not expected to
change appreciably withd. Thus, the experimental fact that the internodal conduc-
tion time is nearly independent of the fiber diameter (Hursh, 1939; Tasakiet al.,
1943) can be explained on the same theoretical basis.

6. CONCLUSION

(1) A nonmyelinated nerve fiber carrying an impulse is represented by a lin-
ear electrical network, consisting of two distinct regions, active and resting.
‘Local currents’ are generated in the vicinity of the boundary between the
two regions. These currents, resulting from the difference in the membrane
emf and resistance in the two regions, play a crucial role in the process of
nerve conduction (Fig.1).

(2) The distribution of the potential associated with the ‘local currents’ is sym-
metric with respect to the boundary (moving at a constant velocity) between
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the resting and active region (Fig.2). A faithful reflection of this symmetry
is seen in the rising phase of a propagated action potential.

(3) Simple formulae [equations (18)–(20)] are derived relating the conduction
velocity to the electrical parameters (membrane capacity, membrane resis-
tance during excitation, and diameter) of the nonmyelinated nerve fiber.

(4) It is emphasized that the internodal conduction time in the myelinated nerve
fiber is governed primarily by the electrical capacity of the myelin sheath.
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